2,202 research outputs found

    How ripples turn into dots: modeling ion-beam erosion under oblique incidence

    Full text link
    Pattern formation on semiconductor surfaces induced by low energetic ion-beam erosion under normal and oblique incidence is theoretically investigated using a continuum model in form of a stochastic, nonlocal, anisotropic Kuramoto-Sivashinsky equation. Depending on the size of the parameters this model exhibits hexagonally ordered dot, ripple, less regular and even rather smooth patterns. We investigate the transitional behavior between such states and suggest how transitions can be experimentally detected.Comment: 11 pages, 4 figures, submitted for publication, revised versio

    Process-based analysis of climate model ENSO simulations: Intermodel consistency and compensating errors

    Get PDF
    Systematic and compensating errors can lead to degraded predictive skill in climate models. Such errors may be identified by comparing different models in an analysis of individual physical processes. We examine model simulations of El Niño–Southern Oscillation (ENSO) in five Coupled Model Intercomparison Project (CMIP) models, using transfer functions to analyze nine processes critical to ENSO's dynamics. The input and output of these processes are identified and analyzed, some of which are motivated by the recharge oscillator theory. Several errors and compensating errors are identified. The east-west slope of the equatorial thermocline is found to respond to the central equatorial Pacific zonal wind stress as a damped driven harmonic oscillator in all models. This result is shown to be inconsistent with two different formulations of the recharge oscillator. East Pacific sea surface temperature (SST) responds consistently to changes in the thermocline depth in the eastern Pacific in the five CMIP models examined here. However, at time scales greater than 2 years, this consistent model response disagrees with observations, showing that the SST leads thermocline depth at long time scales. Compensating errors are present in the response of meridional transport of water away from the equator to SST: two different models show different response of the transport to off-equatorial wind curl and wind curl response to East Pacific SST. However, these two models show the same response of meridional transport to East Pacific SST. Identification of errors in specific physical processes can hopefully lead to model improvement by focusing model development efforts on these processes

    Far-infrared photometric observations of the outer planets and satellites with Herschel-PACS

    Full text link
    We present all Herschel PACS photometer observations of Mars, Saturn, Uranus, Neptune, Callisto, Ganymede, and Titan. All measurements were carefully inspected for quality problems, were reduced in a (semi-)standard way, and were calibrated. The derived flux densities are tied to the standard PACS photometer response calibration, which is based on repeated measurements of five fiducial stars. The overall absolute flux uncertainty is dominated by the estimated 5% model uncertainty of the stellar models in the PACS wavelength range between 60 and 210 micron. A comparison with the corresponding planet and satellite models shows excellent agreement for Uranus, Neptune, and Titan, well within the specified 5%. Callisto is brighter than our model predictions by about 4-8%, Ganymede by about 14-21%. We discuss possible reasons for the model offsets. The measurements of these very bright point-like sources, together with observations of stars and asteroids, show the high reliability of the PACS photometer observations and the linear behavior of the PACS bolometer source fluxes over more than four orders of magnitude (from mJy levels up to more than 1000 Jy). Our results show the great potential of using the observed solar system targets for cross-calibration purposes with other ground-based, airborne, and space-based instruments and projects. At the same time, the PACS results will lead to improved model solutions for future calibration applications.Comment: 25 pages, 11 figures, 11 table

    Influence of the Dufour effect on convection in binary gas mixtures

    Full text link
    Linear and nonlinear properties of convection in binary fluid layers heated from below are investigated, in particular for gas parameters. A Galerkin approximation for realistic boundary conditions that describes stationary and oscillatory convection in the form of straight parallel rolls is used to determine the influence of the Dufour effect on the bifurcation behaviour of convective flow intensity, vertical heat current, and concentration mixing. The Dufour--induced changes in the bifurcation topology and the existence regimes of stationary and traveling wave convection are elucidated. To check the validity of the Galerkin results we compare with finite--difference numerical simulations of the full hydrodynamical field equations. Furthermore, we report on the scaling behaviour of linear properties of the stationary instability.Comment: 14 pages and 10 figures as uuencoded Postscript file (using uufiles

    A Newly Discovered Bordetella Species Carries a Transcriptionally Active CRISPR-Cas with a Small Cas9 Endonuclease

    Get PDF
    Background Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas) are widely distributed among bacteria. These systems provide adaptive immunity against mobile genetic elements specified by the spacer sequences stored within the CRISPR. Methods The CRISPR-Cas system has been identified using Basic Local Alignment Search Tool (BLAST) against other sequenced and annotated genomes and confirmed via CRISPRfinder program. Using Polymerase Chain Reactions (PCR) and Sanger DNA sequencing, we discovered CRISPRs in additional bacterial isolates of the same species of Bordetella. Transcriptional activity and processing of the CRISPR have been assessed via RT-PCR. Results Here we describe a novel Type II-C CRISPR and its associated genes—cas1, cas2, and cas9—in several isolates of a newly discovered Bordetella species. The CRISPR-cas locus, which is absent in all other Bordetella species, has a significantly lower GC-content than the genome-wide average, suggesting acquisition of this locus via horizontal gene transfer from a currently unknown source. The CRISPR array is transcribed and processed into mature CRISPR RNAs (crRNA), some of which have homology to prophages found in closely related species B. hinzii. Conclusions Expression of the CRISPR-Cas system and processing of crRNAs with perfect homology to prophages present in closely related species, but absent in that containing this CRISPR-Cas system, suggest it provides protection against phage predation. The 3,117-bp cas9 endonuclease gene from this novel CRISPR-Cas system is 990 bp smaller than that of Streptococcus pyogenes, the 4,017-bp allele currently used for genome editing, and which may make it a useful tool in various CRISPR-Cas technologies

    Amorphous thin film growth: theory compared with experiment

    Full text link
    Experimental results on amorphous ZrAlCu thin film growth and the dynamics of the surface morphology as predicted from a minimal nonlinear stochastic deposition equation are analysed and compared. Key points of this study are (i) an estimation procedure for coefficients entering into the growth equation and (ii) a detailed analysis and interpretation of the time evolution of the correlation length and the surface roughness. The results corroborate the usefulness of the deposition equation as a tool for studying amorphous growth processes.Comment: 7 pages including 5 figure

    Influence of the Soret effect on convection of binary fluids

    Full text link
    Convection in horizontal layers of binary fluids heated from below and in particular the influence of the Soret effect on the bifurcation properties of extended stationary and traveling patterns that occur for negative Soret coupling is investigated theoretically. The fixed points corresponding to these two convection structures are determined for realistic boundary conditions with a many mode Galerkin scheme for temperature and concentration and an accurate one mode truncation of the velocity field. This solution procedure yields the stable and unstable solutions for all stationary and traveling patterns so that complete phase diagrams for the different convection types in typical binary liquid mixtures can easily be computed. Also the transition from weakly to strongly nonlinear states can be analyzed in detail. An investigation of the concentration current and of the relevance of its constituents shows the way for a simplification of the mode representation of temperature and concentration field as well as for an analytically manageable few mode description.Comment: 30 pages, 12 figure
    corecore