951 research outputs found

    Tropical–North Pacific Climate Linkages over the Past Four Centuries

    Get PDF
    Analyses of instrumental data demonstrate robust linkages between decadal-scale North Pacific and tropical Indo-Pacific climatic variability. These linkages encompass common regime shifts, including the noteworthy 1976 transition in Pacific climate. However, information on Pacific decadal variability and the tropical high-latitude climate connection is limited prior to the twentieth century. Herein tree-ring analysis is employed to extend the understanding of North Pacific climatic variability and related tropical linkages over the past four centuries. To this end, a tree-ring reconstruction of the December-May North Pacific index (NPI)-an index of the atmospheric circulation related to the Aleutian low pressure cell-is presented (1600-1983). The NPI reconstruction shows evidence for the three regime shifts seen in the instrumental NPI data, and for seven events in prior centuries. It correlates significantly with both instrumental tropical climate indices and a coral-based reconstruction of an optimal tropical Indo-Pacific climate index, supporting evidence for a tropical-North Pacific link extending as far west as the western Indian Ocean. The coral-based reconstruction (1781-1993) shows the twentieth-century regime shifts evident in the instrumental NPI and instrumental tropical Indo-Pacific climate index, and three previous shifts. Changes in the strength of correlation between the reconstructions over time, and the different identified shifts in both series prior to the twentieth century, suggest a varying tropical influence on North Pacific climate, with greater influence in the twentieth century. One likely mechanism is the low-frequency variability of the El Nino-Southern Oscillation (ENSO) and its varying impact on Indo-Pacific climate.</p

    A genebic revision of the teibe methiini in the western hemispheee

    Get PDF

    Cosmogenic gamma-rays and the composition of cosmic rays

    Full text link
    We discuss the prospects of detecting the sources of ultra-high energy (UHE) cosmic ray (CR) nuclei via their emission of cosmogenic gamma-rays in the GeV to TeV energy range. These gamma-rays result from electromagnetic cascades initiated by high energy photons, electrons and positrons that are emitted by CRs during their propagation in the cosmic radiation background and are independent of the simultaneous emission of gamma-rays in the vicinity of the source. The corresponding production power by UHE CR nuclei (with mass number A and charge Z) is dominated by pion photo-production (~ A) and Bethe-Heitler pair production (~ Z^2). We show that the cosmogenic gamma-ray signal from a single steady UHE CR source is typically more robust with respect to variations of the source composition and injection spectrum than the accompanying signal of cosmogenic neutrinos. We study the diffuse emission from the sum of extragalactic CR sources as well as the point source emission of the closest sources.Comment: 14 pages, 5 figure

    The energy spectrum observed by the AGASA experiment and the spatial distribution of the sources of ultra-high energy cosmic rays

    Full text link
    Seven and a half years of continuous monitoring of giant air showers triggered by ultra high-energy cosmic rays have been recently summarized by the AGASA collaboration. The resulting energy spectrum indicates clearly that the cosmic ray spectrum extends well beyond the Greisen-Zatsepin-Kuzmin (GZK) cut-off at ∼5×1019\sim 5 \times 10^{19} eV. Furthermore, despite the small number statistics involved, some structure in the spectrum may be emerging. Using numerical simulations, it is demonstrated in the present work that these features are consistent with a spatial distribution of sources that follows the distribution of luminous matter in the local Universe. Therefore, from this point of view, there is no need for a second high-energy component of cosmic rays dominating the spectrum beyond the GZK cut-off.Comment: 14 pages, 4 figures, Astrophys. J. Letters (submitted

    Ultra high energy neutrinos from gamma ray bursts

    Full text link
    Protons accelerated to high energies in the relativistic shocks that generate gamma ray bursts photoproduce pions, and then neutrinos in situ. I show that ultra high energy neutrinos (> 10^19 eV) are produced during the burst and the afterglow. A larger flux, also from bursts, is generated via photoproduction off CMBR photons in flight but is not correlated with currently observable bursts, appearing as a bright background. Adiabatic/synchrotron losses from protons/pions/muons are negligible. Temporal and directional coincidences with bursts detected by satellites can separate correlated neutrinos from the background.Comment: Adiabatic/synchrotron losses from protons/pions/muons shown to be negligible. Accepted for publication in Phys. Rev. Letters. RevTe

    On the Discovery of the GZK Cut-off

    Full text link
    The recent claim of the '5 sigma' observation of the Greisen and Zatzepin and Kuzmin cut-off by the HiRes group based on their nine years data is a significant step toward the eventual solution of the one of the most intriguing questions which has been present in physics for more than forty years. However the word 'significance' is used in the mentioned paper in the sense which is not quite obvious. In the present paper we persuade that this claim is a little premature.Comment: 10 page

    Solar panels as air Cherenkov detectors for extremely high energy cosmic rays

    Full text link
    Increasing interest towards the observation of the highest energy cosmic rays has motivated the development of new detection techniques. The properties of the Cherenkov photon pulse emitted in the atmosphere by these very rare particles indicate low-cost semiconductor detectors as good candidates for their optical read-out. The aim of this paper is to evaluate the viability of solar panels for this purpose. The experimental framework resulting from measurements performed with suitably-designed solar cells and large conventional photovoltaic areas is presented. A discussion on the obtained and achievable sensitivities follows.Comment: 6 pages, 8 eps figures included with epsfig, uses espcrc2.sty. Talk given at the Sixth Topical Seminar on Neutrino and Astroparticle Physics, San Miniato, Italy, 17-21 May 199

    Extreme Energy Cosmic Rays (EECR) Observation Capabilities of an "Airwatch from Space'' Mission

    Get PDF
    The longitudinal development and other characteristics of the EECR induced atmospheric showers can be studied from space by detecting the fluorescence light induced in the atmospheric nitrogen. According to the Airwatch concept a single fast detector can be used for measuring both intensity and time development of the streak of fluorescence light produced by the atmospheric shower induced by an EECR. In the present communication the detection capabilities for the EECR observation from space are discussed.Comment: 3 pages (LaTeX). To appear in the Proceedings of TAUP'9

    Observing Ultra High Energy Cosmic Particles from Space: SEUSO, the Super Extreme Universe Space Observatory Mission

    Get PDF
    The experimental search for ultra high energy cosmic messengers, from E∼1019E\sim 10^{19} eV to beyond E∼1020E\sim 10^{20} eV, at the very end of the known energy spectrum, constitutes an extraordinary opportunity to explore a largely unknown aspect of our universe. Key scientific goals are the identification of the sources of ultra high energy particles, the measurement of their spectra and the study of galactic and local intergalactic magnetic fields. Ultra high energy particles might, also, carry evidence of unknown physics or of exotic particles relics of the early universe. To meet this challenge a significant increase in the integrated exposure is required. This implies a new class of experiments with larger acceptances and good understanding of the systematic uncertainties. Space based observatories can reach the instantaneous aperture and the integrated exposure necessary to systematically explore the ultra high energy universe. In this paper, after briefly summarising the science case of the mission, we describe the scientific goals and requirements of the SEUSO concept. We then introduce the SEUSO observational approach and describe the main instrument and mission features. We conclude discussing the expected performance of the mission
    • …
    corecore