1,048 research outputs found

    A method for measuring cooling air flow in base coolant passages of rotating turbine blades

    Get PDF
    Method accurately determines actual coolant mass flow rate in cooling passages of rotating turbine blades. Total and static pressures are measured in blade base coolant passages. Mass flow rates are calculated from these measurements of pressure, measured temperature and known area

    Flow measurement in base cooling air passages of a rotating turbine blade

    Get PDF
    The operational performance is decribed of a shaft-mounted system for measuring the air mass flow rate in the base cooling passages of a rotating turbine blade. Shaft speeds of 0 to 9000 rpm, air mass flow rates of 0.0035 to 0.039 kg/sec (0.0077 to 0.085 lbm/sec), and blade air temperatures of 300 to 385 K (80 to 233 F) were measured. Comparisons of individual rotating blade flows and corresponding stationary supply orifice flows agreed to within 10 percent

    Rare White dwarf stars with carbon atmospheres

    Full text link
    White dwarfs represent the endpoint of stellar evolution for stars with initial masses between approximately 0.07 msun and 8-10 msun, where msun is the mass of the Sun (more massive stars end their life as either black holes or neutron stars). The theory of stellar evolution predicts that the majority of white dwarfs have a core made of carbon and oxygen, which itself is surrounded by a helium layer and, for ~80 per cent of known white dwarfs, by an additional hydrogen layer. All white dwarfs therefore have been traditionally found to belong to one of two categories: those with a hydrogen-rich atmosphere (the DA spectral type) and those with a helium-rich atmosphere (the non-DAs). Here we report the discovery of several white dwarfs with atmospheres primarily composed of carbon, with little or no trace of hydrogen or helium. Our analysis shows that the atmospheric parameters found for these stars do not fit satisfactorily in any of the currently known theories of post-asymptotic giant branch evolution, although these objects might be the cooler counterpart of the unique and extensively studied PG1159 star H1504+65. These stars, together with H1504+65, might accordingly form a new evolutionary sequence that follow the asymptotic giant branch.Comment: 7 pages, 1 figure, to appear in Nov 22nd 2007 edition of Natur

    SDSS J142625.71+575218.3: the First Pulsating White Dwarf With A Large Detectable Magnetic Field

    Get PDF
    We report the discovery of a strong magnetic field in the unique pulsating carbon- atmosphere white dwarf SDSS J142625.71 + 575218.3. From spectra gathered at the MMT and Keck telescopes, we infer a surface field of B(s) similar or equal to 1.2 MG, based on obvious Zeeman components seen in several carbon lines. We also detect the presence of a Zeeman- splitted He I lambda 4471 line, which is an indicator of the presence of a nonnegligible amount of helium in the atmosphere of this "hot DQ" star. This is important for understanding its pulsations, as nonadabatic theory reveals that some helium must be present in the envelope mixture for pulsation modes to be excited in the range of effective temperature where the target star is found. Out of nearly 200 pulsating white dwarfs known today, this is the first example of a star with a large detectable magnetic field. We suggest that SDSS J142625.71 + 575218.3 is the white dwarf equivalent of a rapidly oscillating Ap star.NSERCNSF AST 03-07321Reardon FoundationAstronom

    Pulsation in carbon-atmosphere white dwarfs: A new chapter in white dwarf asteroseismology

    Full text link
    We present some of the results of a survey aimed at exploring the asteroseismological potential of the newly-discovered carbon-atmosphere white dwarfs. We show that, in certains regions of parameter space, carbon-atmosphere white dwarfs may drive low-order gravity modes. We demonstrate that our theoretical results are consistent with the recent exciting discovery of luminosity variations in SDSS J1426+5752 and some null results obtained by a team of scientists at McDonald Observatory. We also present follow-up photometric observations carried out by ourselves at the Mount Bigelow 1.6-m telescope using the new Mont4K camera. The results of follow-up spectroscopic observations at the MMT are also briefly reported, including the surprising discovery that SDSS J1426+5752 is not only a pulsating star but that it is also a magnetic white dwarf with a surface field near 1.2 MG. The discovery of gg-mode pulsations in SDSS J1426+5752 is quite significant in itself as it opens a fourth asteroseismological "window", after the GW Vir, V777 Her, and ZZ Ceti families, through which one may study white dwarfs.Comment: 7 pages, 4 figures, to appear in Journal of Physics Conference Proceedings for the 16th European White Dwarf Worksho

    Turbine blade metal temperature measurement with a sputtered thin film chromel-alumel thermocouple

    Get PDF
    A technique for fabricating Chromel and Alumel thin film thermocouples was developed. Turbine blade metal temperatures measured with the thin film thermocouple installation were compared with those of a reference sheathed (wire) thermocouple. Good agreement was obtained, and the results are encouraging
    • …
    corecore