2,883 research outputs found

    Reply to the Comment on Perfect imaging with positive refraction in three dimensions

    Full text link
    Exact time-dependent solutions of Maxwell's equations in Maxwell's fish eye show that perfect imaging is not an artifact of a drain at the image, although a drain is required for subwavelength resolution

    Reply on the ``Comment on `Loss-error compensation in quantum- state measurements' ''

    Get PDF
    The authors of the Comment [G. M. D'Ariano and C. Macchiavello to be published in Phys. Rev. A, quant-ph/9701009] tried to reestablish a 0.5 efficiency bound for loss compensation in optical homodyne tomography. In our reply we demonstrate that neither does such a rigorous bound exist nor is the bound required for ruling out the state reconstruction of an individual system [G. M. D'Ariano and H. P. Yuen, Phys. Rev. Lett. 76, 2832 (1996)].Comment: LaTex, 2 pages, 1 Figure; to be published in Physical Review

    Transformation Optics and the Geometry of Light

    Get PDF
    Metamaterials are beginning to transform optics and microwave technology thanks to their versatile properties that, in many cases, can be tailored according to practical needs and desires. Although metamaterials are surely not the answer to all engineering problems, they have inspired a series of significant technological developments and also some imaginative research, because they invite researchers and inventors to dream. Imagine there were no practical limits on the electromagnetic properties of materials. What is possible? And what is not? If there are no practical limits, what are the fundamental limits? Such questions inspire taking a fresh look at the foundations of optics and at connections between optics and other areas of physics. In this article we discuss such a connection, the relationship between optics and general relativity, or, expressed more precisely, between geometrical ideas normally applied in general relativity and the propagation of light, or electromagnetic waves in general, in materials. We also discuss how this connection is applied: in invisibility devices, perfect lenses, the optical Aharonov-Bohm effect of vortices and in analogues of the event horizon.Comment: 72 pages, 18 figures, preprint with low-resolution images. Introduction to transformation optics, to appear in Progress in Optics (edited by Emil Wolf

    No quantum friction between uniformly moving plates

    Full text link
    The Casimir forces between two plates moving parallel to each other are found by calculating the vacuum electromagnetic stress tensor. The perpendicular force between the plates is modified by the motion but there is no lateral force on the plates. Electromagnetic vacuum fluctuations do not therefore give rise to "quantum friction" in this case, contrary to previous assertions. The result shows that the Casimir-Polder force on a particle moving at constant speed parallel to a plate also has no lateral component.Comment: 17 pages. Final, published versio

    Perfect imaging: they don't do it with mirrors

    Full text link
    Imaging with a spherical mirror in empty space is compared with the case when the mirror is filled with the medium of Maxwell's fish eye. Exact time-dependent solutions of Maxwell's equations show that perfect imaging is not achievable with an electrical ideal mirror on its own, but with Maxwell's fish eye in the regime when it implements a curved geometry for full electromagnetic waves

    Fiber-optical analogue of the event horizon

    Full text link
    The physics at the event horizon resembles the behavior of waves in moving media. Horizons are formed where the local speed of the medium exceeds the wave velocity. We use ultrashort pulses in microstructured optical fibers to demonstrate the formation of an artificial event horizon in optics. We observed a classical optical effect, the blue-shifting of light at a white-hole horizon. We also show by theoretical calculations that such a system is capable of probing the quantum effects of horizons, in particular Hawking radiation.Comment: MEDIA EMBARGO. This paper is subject to the media embargo of Scienc

    Quantum levitation by left-handed metamaterials

    Get PDF
    Left-handed metamaterials make perfect lenses that image classical electromagnetic fields with significantly higher resolution than the diffraction limit. Here we consider the quantum physics of such devices. We show that the Casimir force of two conducting plates may turn from attraction to repulsion if a perfect lens is sandwiched between them. For optical left-handed metamaterials this repulsive force of the quantum vacuum may levitate ultra-thin mirrors

    Optical Aharonov-Bohm effect: an inverse hyperbolic problems approach

    Full text link
    We describe the general setting for the optical Aharonov-Bohm effect based on the inverse problem of the identification of the coefficients of the governing hyperbolic equation by the boundary measurements. We interpret the inverse problem result as a possibility in principle to detect the optical Aharonov-Bohm effect by the boundary measurements.Comment: 34 pages. Minor changes, references adde
    • …
    corecore