102 research outputs found

    Fiber-Reinforced Wood Composites

    Get PDF
    The technical feasibility of producing internally reinforced laminated wood is evaluated experimentally. Numerous fiber reinforcements and adhesives are assessed, and effects of several processing and environmental parameters are included. Results demonstrate the increased strength and stiffness to be achieved under both tension and flexure by adding fiber reinforcement. Glass reinforcement is particularly suitable

    Butt Joint Reinforcement in Parallel-Laminated Veneer (PLV) Lumber

    Get PDF
    Parallel-laminated veneer (PLV) is a high-strength structural material consisting of thin parallel-laminated wood veneers. The use of graphite-cloth reinforcement, placed on either side of a butt joint in 1 1/2- by 3 1/2- by 32-inch Douglas-fir PLV tensile members, was assessed. The finite-element method of analysis was used to predict the behavior in different unreinforced and reinforced butt-jointed PLV tensile members. Relationships between the reinforcing parameters—length, modulus of elasticity, and thickness—and the stresses in the wood and reinforcement components were developed by regression analysis techniques. The reinforcing mechanism reduced the peak stresses at the butt joint and hence increased the ultimate strength of the member. Design of PLV material whose strength is limited by shear stresses that develop at the butt joint is facilitated by use of the proposed relationships.Experimental testing confirmed the predictions of the finite-element analysis. Failure initiated at the unreinforced joint in the specimens. Average tensile strength increased and variability decreased in reinforced specimens. Application of a small amount of reinforcement at the butt joint has been shown to enhance PLV performance

    Are olive pomace powders a safe source of bioactives and nutrients?

    Get PDF
    "First published: 10 September 2020"BACKGROUND Olive oil industry generates significant amounts of semi-solid wastes, namely the olive pomace. Olive pomace is a by-product rich in high-value compounds (e.g. dietary fibre, unsaturated fatty acids, polyphenols) widely explored to obtain new food ingredients. However, conventional extraction methods frequently use organic solvents, while novel eco-friendly techniques have high operational costs. The development of powdered products without any extraction step has been proposed as a more feasible and sustainable approach. RESULTS The present study fractionated and valorised the liquid and pulp fraction of olive pomace obtaining two stable and safe powdered ingredients, namely a liquid-enriched powder (LOPP) and a pulp-enriched powder (POPP). These powders were characterized chemically, and their bioactivity was assessed. LOPP exhibited a significant amount of mannitol (141 g/ kg), potassium (54 g/ kg) and hydroxytyrosol/ derivatives (5 mg/g). POPP exhibited high amount of dietary fibre (620 g/ kg) associated to significant amount of bound phenolics (7.41 mg GAE/ g fibre DW) with substantial antioxidant activity. POPP also contained an unsaturated fatty acids composition similar to olive oil (76\% of total fatty acids) and showed potential as a reasonable source of protein (12 \%). Their functional properties (solubility, water-holding and oil-holding capacity), antioxidant capacity and antimicrobial activity were also assessed, and their biological safety was verified. CONCLUSION The development of olive pomace powders to apply in the food industry could be a suitable strategy to add-value to olive pomace and obtain safe multifunctional ingredients with higher health-promoting effects than dietary fibre and polyphenols itself. This article is protected by copyright. All rights reserved.TBR thanks the Fundação para a Ciência e Tecnologia (FCT), Portugal for PhD grant SFRH/BDE/108271/2015 and the financial support of Association BLC3 – Technology and Innovation Campus. This work was supported by National Funds from FCT – Fundação para a Ciência e a Tecnologia through the project MULTIBIOREFINERY – SAICTPAC/0040/2015 (POCI-01-0145-FEDER-016403). We are also grateful for the scientific collaboration under the FCT project UID/Multi/50016/2019.info:eu-repo/semantics/publishedVersio
    corecore