81 research outputs found

    Social Networks and Unemployment Exit in Great Britain

    Get PDF
    Purpose The purpose of this paper is to examine the effect employed friends have on the probability of exiting unemployment of an unemployed worker according to his/her educational (skill) level. Design/methodology/approach In common with studies on unemployment duration, this paper uses a discrete-time hazard model. Findings The paper finds that the conditional probability of finding work is between 24 and 34 per cent higher per period for each additional employed friend for job seekers with intermediate skills. Social implications These results are of interest since they suggest that the reach of national employment agencies could extend beyond individuals in direct contact with first-line employment support bureaus. Originality/value Because of the lack of appropriate longitudinal information, the majority of empirical studies in the area assess the influence of social networks on employment status using proxy measures of social interactions. The current study contributes to the very limited empirical literature of the influence of social networks on job attainment using direct measures of social structures

    Responses of Lotus corniculatus to environmental change 3:The sensitivity of phenolic accumulation to growth temperature and light intensity and effects on tissue digestibility

    Get PDF
    The response of plant growth, phenolic accumulation and tissue digestibility to light and temperature was determined in clonal plants of three genotypes of Lotus corniculatus (birdsfoot trefoil) cv Leo, with low, intermediate or high levels of proanthocyanidins (condensed tannins). Plants were grown from 10 Β°C to 30 Β°C, or at light intensities from 20 to 500 Β΅m mβˆ’2 sβˆ’1. Plants grown at 25 Β°C had the highest growth rate and highest digestibility, whereas the maximum tannin concentration was found in plants grown at 15 Β°C. Approximately linear increases in leaf flavonol glycoside levels were found with increasing growth temperature in the low tannin genotype. Tannin hydroxylation increased with increasing growth temperature but decreased with increasing light intensity. The major leaf flavonols were kaempferol glycosides of which kaempferol-3-glucoside and kaempferol-3,7-dirhamnoside were the major components. Increases in both tannin and total flavonol concentrations in leaves were linearly related to light intensity and were preceded by a specific increase in the transcript level of a non-legume type chalcone isomerase. Changes in growth temperature and light intensity, therefore, result in major changes in the partitioning of carbon into phenolics, which significantly affects tissue digestibility and nutritional quality with a high correlation between tannin concentration and leaf digestibility

    The Rho-Family GTPase Rac1 Regulates Integrin Localization in Drosophila Immunosurveillance Cells

    Get PDF
    BACKGROUND: When the parasitoid wasp Leptopilina boulardi lays an egg in a Drosophila larva, phagocytic cells called plasmatocytes and specialized cells known as lamellocytes encapsulate the egg. The Drosophila Ξ²-integrin Myospheroid (Mys) is necessary for lamellocytes to adhere to the cellular capsule surrounding L. boulardi eggs. Integrins are heterodimeric adhesion receptors consisting of Ξ± and Ξ² subunits, and similar to other plasma membrane receptors undergo ligand-dependent endocytosis. In mammalian cells it is known that integrin binding to the extracellular matrix induces the activation of Rac GTPases, and we have previously shown that Rac1 and Rac2 are necessary for a proper encapsulation response in Drosophila larvae. We wanted to test the possibility that Myospheroid and Rac GTPases interact during the Drosophila anti-parasitoid immune response. RESULTS: In the current study we demonstrate that Rac1 is required for the proper localization of Myospheroid to the cell periphery of haemocytes after parasitization. Interestingly, the mislocalization of Myospheroid in Rac1 mutants is rescued by hyperthermia, involving the heat shock protein Hsp83. From these results we conclude that Rac1 and Hsp83 are required for the proper localization of Mys after parasitization. SIGNIFICANCE: We show for the first time that the small GTPase Rac1 is required for Mysopheroid localization. Interestingly, the necessity of Rac1 in Mys localization was negated by hyperthermia. This presents a problem, in Drosophila we quite often raise larvae at 29Β°C when using the GAL4/UAS misexpression system. If hyperthermia rescues receptor endosomal recycling defects, raising larvae in hyperthermic conditions may mask potentially interesting phenotypes

    Blood Feeding and Insulin-like Peptide 3 Stimulate Proliferation of Hemocytes in the Mosquito Aedes aegypti

    Get PDF
    All vector mosquito species must feed on the blood of a vertebrate host to produce eggs. Multiple cycles of blood feeding also promote frequent contacts with hosts, which enhance the risk of exposure to infectious agents and disease transmission. Blood feeding triggers the release of insulin-like peptides (ILPs) from the brain of the mosquito Aedes aegypti, which regulate blood meal digestion and egg formation. In turn, hemocytes serve as the most important constitutive defense in mosquitoes against pathogens that enter the hemocoel. Prior studies indicated that blood feeding stimulates hemocytes to increase in abundance, but how this increase in abundance is regulated is unknown. Here, we determined that phagocytic granulocytes and oenocytoids express the A. aegypti insulin receptor (AaMIR). We then showed that: 1) decapitation of mosquitoes after blood feeding inhibited hemocyte proliferation, 2) a single dose of insulin-like peptide 3 (ILP3) sufficient to stimulate egg production rescued proliferation, and 3) knockdown of the AaMIR inhibited ILP3 rescue activity. Infection studies indicated that increased hemocyte abundance enhanced clearance of the bacterium Escherichia coli at lower levels of infection. Surprisingly, however, non-blood fed females better survived intermediate and high levels of E. coli infection than blood fed females. Taken together, our results reveal a previously unrecognized role for the insulin signaling pathway in regulating hemocyte proliferation. Our results also indicate that blood feeding enhances resistance to E. coli at lower levels of infection but reduces tolerance at higher levels of infection

    High Hemocyte Load Is Associated with Increased Resistance against Parasitoids in Drosophila suzukii, a Relative of D. melanogaster

    Get PDF
    Among the most common parasites of Drosophila in nature are parasitoid wasps, which lay their eggs in fly larvae and pupae. D. melanogaster larvae can mount a cellular immune response against wasp eggs, but female wasps inject venom along with their eggs to block this immune response. Genetic variation in flies for immune resistance against wasps and genetic variation in wasps for virulence against flies largely determines the outcome of any fly-wasp interaction. Interestingly, up to 90% of the variation in fly resistance against wasp parasitism has been linked to a very simple mechanism: flies with increased constitutive blood cell (hemocyte) production are more resistant. However, this relationship has not been tested for Drosophila hosts outside of the melanogaster subgroup, nor has it been tested across a diversity of parasitoid wasp species and strains. We compared hemocyte levels in two fly species from different subgroups, D. melanogaster and D. suzukii, and found that D. suzukii constitutively produces up to five times more hemocytes than D. melanogaster. Using a panel of 24 parasitoid wasp strains representing fifteen species, four families, and multiple virulence strategies, we found that D. suzukii was significantly more resistant to wasp parasitism than D. melanogaster. Thus, our data suggest that the relationship between hemocyte production and wasp resistance is general. However, at least one sympatric wasp species was a highly successful infector of D. suzukii, suggesting specialists can overcome the general resistance afforded to hosts by excessive hemocyte production. Given that D. suzukii is an emerging agricultural pest, identification of the few parasitoid wasps that successfully infect D. suzukii may have value for biocontrol

    A shared role for RBF1 and dCAP-D3 in the regulation of transcription with consequences for innate immunity

    Get PDF
    Previously, we discovered a conserved interaction between RB proteins and the Condensin II protein CAP-D3 that is important for ensuring uniform chromatin condensation during mitotic prophase. The Drosophila melanogaster homologs RBF1 and dCAP-D3 co-localize on non-dividing polytene chromatin, suggesting the existence of a shared, non-mitotic role for these two proteins. Here, we show that the absence of RBF1 and dCAP-D3 alters the expression of many of the same genes in larvae and adult flies. Strikingly, most of the genes affected by the loss of RBF1 and dCAP-D3 are not classic cell cycle genes but are developmentally regulated genes with tissue-specific functions and these genes tend to be located in gene clusters. Our data reveal that RBF1 and dCAP-D3 are needed in fat body cells to activate transcription of clusters of antimicrobial peptide (AMP) genes. AMPs are important for innate immunity, and loss of either dCAP-D3 or RBF1 regulation results in a decrease in the ability to clear bacteria. Interestingly, in the adult fat body, RBF1 and dCAP-D3 bind to regions flanking an AMP gene cluster both prior to and following bacterial infection. These results describe a novel, non-mitotic role for the RBF1 and dCAP-D3 proteins in activation of the Drosophila immune system and suggest dCAP-D3 has an important role at specific subsets of RBF1-dependent genes
    • …
    corecore