3,300 research outputs found

    Influences of nano zero valent ion of kaolin and Fe2+ supported kaolin nanoparticles for metal ion separation thorough ultrafiltration

    Get PDF
    In this work, clay based nanocomposite material was synthesized by wet chemical route and nano zero valent ion of kaolin (nZVI:Kaolin) were prepared using sodium borohydride reduction method. The nZVI:Kaolin and Fe:Kaolin nanoparticles were characterized using XRD, FTIR and SEM and antimicrobial activity. The nZVI:Kaolin and Fe:Kaolin were incorporated into polyethersulfone (PES) membranes for metal ion separation through ultrafiltration. The influences of nZVI:Kaolin and Fe supported clay nanoparticles on PES membranes were characterized their modification in functional properties, hydrophilicity and morphological structure. The clean water flux was enhanced to PES membrane by addition of nZVI:Kaolin and Fe:Kaolin nanoparticles. The Cu (ii), Ni (ii) and Cd (ii) metal ions flux was increased for 0.15 wt% of nZVI and Fe:Kaolin nanoparticles in PES which is due to increase in hydrophilicity and change in morphological structure

    The C-Fern (Ceratopteris richardii) Genome: Insights Into Plant Genome Evolution With the First Partial Homosporous Fern Genome Assembly

    Get PDF
    Ferns are notorious for possessing large genomes and numerous chromosomes. Despite decades of speculation, the processes underlying the expansive genomes of ferns are unclear, largely due to the absence of a sequenced homosporous fern genome. The lack of this crucial resource has not only hindered investigations of evolutionary processes responsible for the unusual genome characteristics of homosporous ferns, but also impeded synthesis of genome evolution across land plants. Here, we used the model fern species Ceratopteris richardii to address the processes (e.g., polyploidy, spread of repeat elements) by which the large genomes and high chromosome numbers typical of homosporous ferns may have evolved and have been maintained. We directly compared repeat compositions in species spanning the green plant tree of life and a diversity of genome sizes, as well as both short- and long-read-based assemblies of Ceratopteris. We found evidence consistent with a single ancient polyploidy event in the evolutionary history of Ceratopteris based on both genomic and cytogenetic data, and on repeat proportions similar to those found in large flowering plant genomes. This study provides a major stepping-stone in the understanding of land plant evolutionary genomics by providing the first homosporous fern reference genome, as well as insights into the processes underlying the formation of these massive genomes

    Multipole interaction between atoms and their photonic environment

    Get PDF
    Macroscopic field quantization is presented for a nondispersive photonic dielectric environment, both in the absence and presence of guest atoms. Starting with a minimal-coupling Lagrangian, a careful look at functional derivatives shows how to obtain Maxwell's equations before and after choosing a suitable gauge. A Hamiltonian is derived with a multipolar interaction between the guest atoms and the electromagnetic field. Canonical variables and fields are determined and in particular the field canonically conjugate to the vector potential is identified by functional differentiation as minus the full displacement field. An important result is that inside the dielectric a dipole couples to a field that is neither the (transverse) electric nor the macroscopic displacement field. The dielectric function is different from the bulk dielectric function at the position of the dipole, so that local-field effects must be taken into account.Comment: 17 pages, to be published in Physical Review

    Resonant dipole-dipole interaction in the presence of dispersing and absorbing surroundings

    Full text link
    Within the framework of quantization of the macroscopic electromagnetic field, equations of motion and an effective Hamiltonian for treating both the resonant dipole-dipole interaction between two-level atoms and the resonant atom-field interaction are derived, which can suitably be used for studying the influence of arbitrary dispersing and absorbing material surroundings on these interactions. The theory is applied to the study of the transient behavior of two atoms that initially share a single excitation, with special emphasis on the role of the two competing processes of virtual and real photon exchange in the energy transfer between the atoms. In particular, it is shown that for weak atom-field interaction there is a time window, where the energy transfer follows a rate regime of the type obtained by ordinary second-order perturbation theory. Finally, the resonant dipole-dipole interaction is shown to give rise to a doublet spectrum of the emitted light for weak atom-field interaction and a triplet spectrum for strong atom-field interaction.Comment: 15 pages, 1 figure, RevTE

    Radiating dipoles in photonic crystals

    Get PDF
    The radiation dynamics of a dipole antenna embedded in a Photonic Crystal are modeled by an initially excited harmonic oscillator coupled to a non--Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the Photonic Crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra are reproduced. This approach enables direct incorporation of realistic band structure computations into studies of radiative emission from atoms and molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in both the microwave and optical regimes.Comment: Phys. Rev. E, accepte

    On the equivalence of the Langevin and auxiliary field quantization methods for absorbing dielectrics

    Get PDF
    Recently two methods have been developed for the quantization of the electromagnetic field in general dispersing and absorbing linear dielectrics. The first is based upon the introduction of a quantum Langevin current in Maxwell's equations [T. Gruner and D.-G. Welsch, Phys. Rev. A 53, 1818 (1996); Ho Trung Dung, L. Kn\"{o}ll, and D.-G. Welsch, Phys. Rev. A 57, 3931 (1998); S. Scheel, L. Kn\"{o}ll, and D.-G. Welsch, Phys. Rev. A 58, 700 (1998)], whereas the second makes use of a set of auxiliary fields, followed by a canonical quantization procedure [A. Tip, Phys. Rev. A 57, 4818 (1998)]. We show that both approaches are equivalent.Comment: 7 pages, RevTeX, no figure

    Charge disproportionation and the pressure-induced insulator?metal transition in cubic perovskite PbCrO3

    Get PDF
    The perovskite PbCrO3 is an antiferromagnetic insulator. However, the fundamental interactions leading to the insulating state in this single-valent perovskite are unclear. Moreover, the origin of the unprecedented volume drop observed at a modest pressure of P = 1.6 GPa remains an outstanding problem. We report a variety of in situ pressure measurements including electron transport properties, X-ray absorption spectrum, and crystal structure study by X-ray and neutron diffraction. These studies reveal key information leading to the elucidation of the physics behind the insulating state and the pressure-induced transition. We argue that a charge disproportionation 3Cr4+ → 2Cr3+ + Cr6+ in association with the 6s-p hybridization on the Pb2+ is responsible for the insulating ground state of PbCrO3 at ambient pressure and the charge disproportionation phase is suppressed under pressure to give rise to a metallic phase at high pressure. The model is well supported by density function theory plus the correlation energy U (DFT+U) calculations.Fil: Cheng, Jinguang. University Of Texas At Austin; Estados Unidos. Chinese Academy Of Sciences; RepĂșblica de China. University of Tokyo. Institute for Solid State Physics; JapĂłnFil: Kweon, K. E.. University Of Texas At Austin; Estados UnidosFil: Larregola, Sebastian Alberto. University Of Texas At Austin; Estados Unidos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico San Luis. Instituto de Investigaciones en TecnologĂ­a QuĂ­mica; ArgentinaFil: Ding, Yang. Argonne National Laboratory; Estados UnidosFil: Shirako, Y.. University Of Texas At Austin; Estados UnidosFil: Marshall, L. G.. University Of Texas At Austin; Estados Unidos. Northeastern University; Estados UnidosFil: Li, Z. Y.. University Of Texas At Austin; Estados UnidosFil: Li, X.. University Of Texas At Austin; Estados UnidosFil: Dos Santos, AntĂłnio M.. Oak Ridge National Laboratory. Quantum Condensed Matter Division; Estados UnidosFil: Suchomel, M. R.. Argonne National Laboratory; Estados UnidosFil: Matsubayashi, K.. University of Tokyo. Institute for Solid State Physics; JapĂłnFil: Uwatoko, Y.. University of Tokyo. Institute for Solid State Physics; JapĂłnFil: Hwang, G. S.. University Of Texas At Austin; Estados UnidosFil: Goodenough, John B.. University Of Texas At Austin; Estados UnidosFil: Zhou, J. S.. University Of Texas At Austin; Estados Unido

    Efficient rejection of organic compounds using functionalized ZSM-5 incorporated PPSU mixed matrix membrane

    Get PDF
    Zeolite (ZSM-5) and functionalised zeolite blended polyphenylsulfone (PPSU) mixed matrix membranes (MMMs) were fabricated for comparing their performance with virgin PPSU. Similar to zeolite-MMMs, functionalised zeolites such as Fe-ZSM-5 (Fe-Z) and Cu-ZSM-5 (Cu-Z) were mixed with PPSU in the presence of N-methyl pyrrolidone (NMP) solvent. The synthesized zeolite nanoparticles were ultra-sonicated before incorporation to ensure uniform dispersion in PPSU. The PPSU MMMs with incorporated nanomaterials were fabricated as flat sheet modules by means of the phase inversion method. The developed MMMs were examined for homogeneity and characterized for their properties, such as surface hydrophilicity, membrane morphology, thermal stability and surface roughness. An enhanced pure water flux of 62 L m−2 h−1 and a highest lignin retention of 85.2% were observed for a PPSU membrane with 0.5 wt% of zeolite nanomaterials incorporated. The 3D porous structure of the zeolite favoured the enhancement of flux during water and lignin separation. However, the incorporation of functionalised zeolite nanomaterials influenced the increase in maximum lignin rejection to 88.5%. The performance and anti-fouling ability of synthesized MMMs has been evaluated based on the rejection of organic components. Higher preferential permeation with great rejection of lignin were simultaneously observed for zeolite and Cu-zeolite incorporated MMMs
    • 

    corecore