42 research outputs found

    Constructing large DNA segments by iterative clone recombination

    Get PDF
    Methods for constructing large contiguous segments of DNA will be enabling for Synthetic Biology, where the assembly of genes encoding circuits, biosynthetic pathways or even whole microbial organisms is of interest. Currently, in vitro approaches to DNA synthesis are adequate for generating DNAs that are up to 10s of kbp in length, and in vivo recombination strategies are more suitable for building DNA constructs that are 100 kbp or larger. We have developed a vector system for efficient assembly of large DNA molecules by iterative in vivo recombination of fosmid clones. Two custom fosmid vectors have been built, pFOSAMP and pFOSKAN, that support antibiotic switching. Using this technique we rebuilt two non-contiguous regions of the Haemophilus influenzae genome as episomes in recombinogenic Escherichia coli host cells. These regions together comprise190 kbp, or 10.4% of the H. influenze genome

    A BAC Transgene Expressing Human CFTR under Control of Its Regulatory Elements Rescues Cftr Knockout Mice

    Get PDF
    Small-molecule modulators of cystic fibrosis transmembrane conductance regulator (CFTR) biology show promise in the treatment of cystic fibrosis (CF). A Cftr knockout (Cftr KO) mouse expressing mutants of human CFTR would advance in vivo testing of new modulators. A bacterial artificial chromosome (BAC) carrying the complete hCFTR gene including regulatory elements within 40.1 kb of DNA 5? and 25 kb of DNA 3? to the gene was used to generate founder mice expressing hCFTR. Whole genome sequencing indicated a single integration site on mouse chromosome 8 (8qB2) with ~6 gene copies. hCFTR+ offspring were bred to murine Cftr KO mice, producing hCFTR+/mCftr? (H+/m?) mice, which had normal survival, growth and goblet cell function as compared to wild-type (WT) mice. Expression studies showed hCFTR protein and transcripts in tissues typically expressing mCftr. Functionally, nasal potential difference and large intestinal short-circuit (Isc) responses to cAMP stimulation were similar in magnitude to WT mice, whereas small intestinal cAMP ?Isc responses were reduced. A BAC transgenic mouse with functional hCFTR under control of its regulatory elements has been developed to enable the generation of mouse models of hCFTR mutations by gene editing for in vivo testing of new CF therapies

    Retrofitting BACs with G418 resistance, luciferase, and oriP and EBNA-1 - new vectors for in vitro and in vivo delivery

    Get PDF
    Background: Bacterial artificial chromosomes ( BACs) have been used extensively for sequencing the human and mouse genomes and are thus readily available for most genes. The large size of BACs means that they can generally carry intact genes with all the long range controlling elements that drive full levels of tissue-specific expression. For gene expression studies and gene therapy applications it is useful to be able to retrofit the BACs with selectable genes such as G418 resistance, reporter genes such as luciferase, and oriP/EBNA-1 from Epstein Barr virus which allows long term episomal maintenance in mammalian cells. Results: We describe a series of retrofitting plasmids and a protocol for in vivo loxP/Cre recombination. The vector pRetroNeo carries a G418 resistance cassette, pRetroNeoLuc carries G418 resistance and a luciferase expression cassette, pRetroNeoLucOE carries G418 resistance, luciferase and an oriP/EBNA-1 cassette and pRetroNeoOE carries G418 resistance and oriP/EBNA-1. These vectors can be efficiently retrofitted onto BACs without rearrangement of the BAC clone. The luciferase cassette is expressed efficiently from the retrofitting plasmids and from retrofitted BACs after transient transfection of B16F10 cells in tissue culture and after electroporation into muscles of BALB/c mice in vivo. We also show that a BAC carrying GFP, oriP and EBNA-1 can be transfected into B16F10 cells with Lipofectamine 2000 and can be rescued intact after 5 weeks. Conclusion: The pRetro vectors allow efficient retrofitting of BACs with G418 resistance, luciferase and/or oriP/EBNA-1 using in vivo expression of Cre. The luciferase reporter gene is expressed after transient transfection of retrofitted BACs into cells in tissue culture and after electroporation into mouse muscle in vivo. OriP/EBNA-1 allows stable maintenance of a 150-kb BAC without rearrangement for at least 5 weeks

    Recombining Overlapping BACs into Single Large BACs

    No full text
    corecore