387 research outputs found
Olfactory and trigeminal interaction of menthol and nicotine in humans
The purpose of the study was to investigate the interactions between two stimuli—menthol and nicotine—both of which activate the olfactory and the trigeminal system. More specifically, we wanted to know whether menthol at different concentrations modulates the perception of burning and stinging pain induced by nicotine stimuli in the human nose. The study followed an eightfold randomized, double-blind, cross-over design including 20 participants. Thirty phasic nicotine stimuli at one of the two concentrations (99 and 134 ng/mL) were applied during the entire experiment every 1.5 min for 1 s; tonic menthol stimulation at one of the three concentrations (0.8, 1.5 and 3.4 μg/mL) or no-menthol (placebo control conditions) was introduced after the 15th nicotine stimulus. The perceived intensities of nicotine’s burning and stinging pain sensations, as well as perceived intensities of menthol’s odor, cooling and pain sensations, were estimated using visual analog scales. Recorded estimates of stinging and burning sensations induced by nicotine initially decreased (first half of the experiment) probably due to adaptation/habituation. Tonic menthol stimulation did not change steady-state nicotine pain intensity estimates, neither for burning nor for stinging pain. Menthol-induced odor and cooling sensations were concentration dependent when combined with low-intensity nicotine stimuli. Surprisingly, this dose dependency was eliminated when combining menthol stimuli with high-intensity nicotine stimuli. There was no such nicotine effect on menthol’s pain sensation. In summary, we detected interactions caused by nicotine on menthol perception for odor and cooling but no effect was elicited by menthol on nicotine pain sensation
Primary debulking surgery versus primary neoadjuvant chemotherapy for high grade advanced stage ovarian cancer: Comparison of survivals
The aim of the study was to analyze the overall survival (OS) and progression free survival (PFS) of patients with high grade and advanced stage epithelial ovarian cancer (EOC) with at least 60 months of follow-up treated in a single gynecologic oncology institute. We compared primary debulking surgery (PDS) versus neoadjuvant chemotherapy plus interval debulking surgery (NACT + IDS) stratifying data based on residual disease with the intent to identify the rationale for therapeutic option decision and the role of laparoscopic evaluation of resectability for that intention. This is observational retrospective study on consecutive patients with diagnosis of high grade and International Federation of Gynecology and Obstetrics (FIGO) stage III/IV EOC referred to our center between January 2008 and May 2012. We selected only patients with a follow-up of at least 60 months. Primary endpoint was to compare PDS versus NACT + IDS in term of progression free survival (PFS) and overall survival (OS). Secondary endpoints were PFS and OS stratifying data according to residual disease after surgery in patients receiving PDS versus NACT + IDS. Finally, through Cox hazards models, we tested the prognostic value of different variables (patient age at diagnosis, residual disease after debulking, American Society of Anesthesiologists (ASA) stage, number of adjuvant-chemotherapy cycles) for predicting OS. A total number of 157 patients were included in data analysis. Comparing PDS arm (108 patients) and NACT + IDS arm (49 patients) we found no significant differences in term of OS (41.3 versus 34.5 months, respectively) and PFS (17.3 versus 18.3 months, respectively). According to residual disease we found no significant differences in term of OS between NACT + IDS patients with residual disease = 0 and PDS patients with residual disease = 0 or residual disease = 1, as well as no significant differences in PFS were found comparing NACT + IDS patients with residual disease = 0 and PDS patients with residual disease = 0; contrarily, median PFS resulted significantly lower in PDS patients receiving optimal debulking (residual disease = 1) in comparison to NACT + IDS patients receiving complete debulking (residual disease = 0). PDS arm was affected by a significant higher rate of severe post-operative complications (grade 3 and 4). Diagnostic laparoscopy before surgery was significantly associated with complete debulking. We confirm previous findings concerning the non-superiority of NACT + IDS compared to PDS for the treatment of EOC, even if NACT + IDS treatment was associated with significant lower rate of post-operative complications. On the other hand, selecting patients for NACT + IDS, based on laparoscopic evaluation of resectabilty prolongs the PFS and does not worse the OS compared to the patients not completely debulked with PDS
PHOTON BEAMLINE CONTROL SYSTEM AS A PRODUCT
Abstract Every beamline is different, which makes it impossible to buy a control system off the shelf. Nevertheless well tested and customizable building blocks can be prepared, which are then put together according to customer requirements. Delivering a fully operational control system is not just software development, but also gathering specifications, writing documentation, testing the hardware and trimming the software on site. Based on the delivery of a number of working beamline control systems, this paper will prove that we have optimized all stages and can guarantee that the purchased control system will be delivered on time, will work according to specifications and will be properly documented. The customers can also count on support
Muon content of ultra-high-energy air showers: Yakutsk data versus simulations
We analyse a sample of 33 extensive air showers (EAS) with estimated primary
energies above 2\cdot 10^{19} eV and high-quality muon data recorded by the
Yakutsk EAS array. We compare, event-by-event, the observed muon density to
that expected from CORSIKA simulations for primary protons and iron, using
SIBYLL and EPOS hadronic interaction models. The study suggests the presence of
two distinct hadronic components, ``light'' and ``heavy''. Simulations with
EPOS are in a good agreement with the expected composition in which the light
component corresponds to protons and the heavy component to iron-like nuclei.
With SYBILL, simulated muon densities for iron primaries are a factor of \sim
1.5 less than those observed for the heavy component, for the same
electromagnetic signal. Assuming two-component proton-iron composition and the
EPOS model, the fraction of protons with energies E>10^{19} eV is
0.52^{+0.19}_{-0.20} at 95% confidence level.Comment: 8 pages, 3 figures; v2: replaced with journal versio
N-Cyclohexyl-2-fluorobenzamide
In the title compound, C13H16FNO, the fluorobenzene ring plane and the plane through the amide unit are inclined at a dihedral angle of 29.92 (7)°. The cyclohexane ring adopts a chair conformation. In the crystal structure, N—H⋯O hydrogen bonds, augmented by weak C—H⋯O interactions, link the molecules into transverse chains along a. These chains are linked into zigzag columns down a by C—H⋯F hydrogen bonds and C—H⋯π interactions
Time-Frequency Analysis of Chemosensory Event-Related Potentials to Characterize the Cortical Representation of Odors in Humans
BACKGROUND: The recording of olfactory and trigeminal chemosensory event-related potentials (ERPs) has been proposed as an objective and non-invasive technique to study the cortical processing of odors in humans. Until now, the responses have been characterized mainly using across-trial averaging in the time domain. Unfortunately, chemosensory ERPs, in particular, olfactory ERPs, exhibit a relatively low signal-to-noise ratio. Hence, although the technique is increasingly used in basic research as well as in clinical practice to evaluate people suffering from olfactory disorders, its current clinical relevance remains very limited. Here, we used a time-frequency analysis based on the wavelet transform to reveal EEG responses that are not strictly phase-locked to onset of the chemosensory stimulus. We hypothesized that this approach would significantly enhance the signal-to-noise ratio of the EEG responses to chemosensory stimulation because, as compared to conventional time-domain averaging, (1) it is less sensitive to temporal jitter and (2) it can reveal non phase-locked EEG responses such as event-related synchronization and desynchronization. METHODOLOGY/PRINCIPAL FINDINGS: EEG responses to selective trigeminal and olfactory stimulation were recorded in 11 normosmic subjects. A Morlet wavelet was used to characterize the elicited responses in the time-frequency domain. We found that this approach markedly improved the signal-to-noise ratio of the obtained EEG responses, in particular, following olfactory stimulation. Furthermore, the approach allowed characterizing non phase-locked components that could not be identified using conventional time-domain averaging. CONCLUSION/SIGNIFICANCE: By providing a more robust and complete view of how odors are represented in the human brain, our approach could constitute the basis for a robust tool to study olfaction, both for basic research and clinicians
The Human Operculo-Insular Cortex Is Pain-Preferentially but Not Pain-Exclusively Activated by Trigeminal and Olfactory Stimuli
Increasing evidence about the central nervous representation of pain in the brain suggests that the operculo-insular cortex is a crucial part of the pain matrix. The pain-specificity of a brain region may be tested by administering nociceptive stimuli while controlling for unspecific activations by administering non-nociceptive stimuli. We applied this paradigm to nasal chemosensation, delivering trigeminal or olfactory stimuli, to verify the pain-specificity of the operculo-insular cortex. In detail, brain activations due to intranasal stimulation induced by non-nociceptive olfactory stimuli of hydrogen sulfide (5 ppm) or vanillin (0.8 ppm) were used to mask brain activations due to somatosensory, clearly nociceptive trigeminal stimulations with gaseous carbon dioxide (75% v/v). Functional magnetic resonance (fMRI) images were recorded from 12 healthy volunteers in a 3T head scanner during stimulus administration using an event-related design. We found that significantly more activations following nociceptive than non-nociceptive stimuli were localized bilaterally in two restricted clusters in the brain containing the primary and secondary somatosensory areas and the insular cortices consistent with the operculo-insular cortex. However, these activations completely disappeared when eliminating activations associated with the administration of olfactory stimuli, which were small but measurable. While the present experiments verify that the operculo-insular cortex plays a role in the processing of nociceptive input, they also show that it is not a pain-exclusive brain region and allow, in the experimental context, for the interpretation that the operculo-insular cortex splay a major role in the detection of and responding to salient events, whether or not these events are nociceptive or painful
Assessing Implicit Odor Localization in Humans Using a Cross-Modal Spatial Cueing Paradigm
Navigation based on chemosensory information is one of the most important skills in the animal kingdom. Studies on odor localization suggest that humans have lost this ability. However, the experimental approaches used so far were limited to explicit judgements, which might ignore a residual ability for directional smelling on an implicit level without conscious appraisal.A novel cueing paradigm was developed in order to determine whether an implicit ability for directional smelling exists. Participants performed a visual two-alternative forced choice task in which the target was preceded either by a side-congruent or a side-incongruent olfactory spatial cue. An explicit odor localization task was implemented in a second experiment.No effect of cue congruency on mean reaction times could be found. However, a time by condition interaction emerged, with significantly slower responses to congruently compared to incongruently cued targets at the beginning of the experiment. This cueing effect gradually disappeared throughout the course of the experiment. In addition, participants performed at chance level in the explicit odor localization task, thus confirming the results of previous research.The implicit cueing task suggests the existence of spatial information processing in the olfactory system. Response slowing after a side-congruent olfactory cue is interpreted as a cross-modal attentional interference effect. In addition, habituation might have led to a gradual disappearance of the cueing effect. It is concluded that under immobile conditions with passive monorhinal stimulation, humans are unable to explicitly determine the location of a pure odorant. Implicitly, however, odor localization seems to exert an influence on human behaviour. To our knowledge, these data are the first to show implicit effects of odor localization on overt human behaviour and thus support the hypothesis of residual directional smelling in humans
- …