4,261 research outputs found

    Anomalous pressure dependence of the atomic displacements in the relaxor ferroelectric PbMg1/3_{1/3}Ta2/3_{2/3}O3_3

    Full text link
    The crystal structure of the PbMg1/3_{1/3}Ta2/3_{2/3}O3_3 (PMT) relaxor ferroelectric was studied under hydrostatic pressure up to ∌7\sim 7 GPa by means of powder neutron diffraction. We find a drastic pressure-induced decrease of the lead displacement from the inversion centre which correlates with an increase by ∌\sim 50 % of the anisotropy of the oxygen temperature factor. The vibrations of the Mg/Ta are, in contrast, rather pressure insensitive. We attribute these changes being responsible for the previously reported pressure-induced suppression of the anomalous dielectric permittivity and diffuse scattering in relaxor ferroelectrics

    The complex environment of the bright carbon star TX Psc as probed by spectro-astrometry

    Full text link
    Context: Stars on the asymptotic giant branch (AGB) show broad evidence of inhomogeneous atmospheres and circumstellar envelopes. These have been studied by a variety of methods on various angular scales. In this paper we explore the envelope of the well-studied carbon star TX Psc by the technique of spectro-astrometry. Aims: We explore the potential of this method for detecting asymmetries around AGB stars. Methods:We obtained CRIRES observations of several CO Δ\Deltav=1 lines near 4.6 ÎŒ\mum and HCN lines near 3 ÎŒ\mum in 2010 and 2013. These were then searched for spectro-astrometric signatures. For the interpretation of the results, we used simple simulated observations. Results: Several lines show significant photocentre shifts with a clear dependence on position angle. In all cases, tilde-shaped signatures are found where the positive and negative shifts (at PA 0deg) are associated with blue and weaker red components of the lines. The shifts can be modelled with a bright blob 70 mas to 210 mas south of the star with a flux of several percent of the photospheric flux. We estimate a lower limit of the blob temperature of 1000 K. The blob may be related to a mass ejection as found for AGB stars or red supergiants. We also consider the scenario of a companion object. Conclusions: Although there is clear spectro-astrometric evidence of a rather prominent structure near TX Psc, it does not seem to relate to the other evidence of asymmetries, so no definite explanation can be given. Our data thus underline the very complex structure of the environment of this star, but further observations that sample the angular scales out to a few hundred milli-arcseconds are needed to get a clearer picture

    Hands-On TAROT: Intercontinental use of the TAROT for Education and Public Outreach

    Get PDF
    The TAROT telescope has for primary goal the search for the prompt optical counterpart of Cosmic Gamma-Ray Bursts. It is a completely autonomous 25cm telescope installed near Nice (France), able to point any location of the sky within 1-2 seconds. The control, scheduling, and data processing activities are completely automated, so the instrument is completely autonomous. In addition to its un-manned modes, we added recently the possibility to remotely control the telescope, as a request of the "Hands-On Universe" (HOU) program for exchange of time within automatic telescopes for the education and public outreach. To this purpose we developed a simple control interface. A webcam was installed to visualize the telescope. Access to the data is possible through a web interface. The images can be processed by the HOU software, a program specially suited for use within the classroom. We experienced these feature during the open days of the University of California Berkeley and the Astronomy Festival of Fleurance (France). We plan a regular use for an astronomy course of the Museum of Tokyo, as well as for French schools. Not only does Hands-On TAROT gives the general public an access to professional astronomy, but it is also a more general tool to demonstrate the use of a complex automated system, the techniques of data processing and automation. Last but not least, through the use of telescopes located in many countries over the globe, a form of powerful and genuine cooperation between teachers and children from various countries is promoted, with a clear educational goal.Comment: 4 pages, Based on a demonstration presented at the ADASS X Conference, Boston, MA, USA, October 2000, to appear in ASP Conf. Serie

    Detection of a very bright optical flare from a gamma-ray burst at redshift 6.29

    Full text link
    In this letter we discuss the flux and the behavior of the bright optical flare emission detected by the 25 cm TAROT robotic telescope during the prompt high-energy emission and the early afterglow. We combine our data with simultaneous observations performed in X-rays and we analyze the broad-band spectrum. These observations lead us to emphasize the similarity of GRB 050904 with GRB 990123, a remarkable gamma-ray burst whose optical emission reached 9th magnitude. While GRB 990123 was, until now, considered as a unique event, this observation suggests the existence of a population of GRBs which have very large isotropic equivalent energies and extremely bright optical counterparts. The luminosity of these GRBs is such that they are easily detectable through the entire universe. Since we can detect them to very high redshift even with small aperture telescopes like TAROT, they will constitute powerful tools for the exploration of the high-redshift Universe and might be used to probe the first generation of stars.Comment: 9 pages, 3 figures. Accepted in ApJ

    Continuous optical monitoring during the prompt emission of GRB 060111B

    Full text link
    We present the time-resolved optical emission of GRB 060111B during its prompt phase, measured with the TAROT robotic observatory. This is the first time that the optical emission from a gamma-ray burst has been continuously monitored with a temporal resolution of a few seconds during the prompt gamma-ray phase. The temporal evolution of the prompt optical emission at the level of several seconds is used to provide a clue to the origin of this emission. The optical emission was found to decay steadily from our first measure, 28s after the trigger, in contrast to the gamma-ray emission, which exhibits strong variability at the same time. This behaviour strongly suggests that the optical emission is due to the reverse shock

    Strong electrically tunable exciton g-factors in an individual quantum dots due to hole orbital angular momentum quenching

    Get PDF
    Strong electrically tunable exciton g-factors are observed in individual (Ga)InAs self-assembled quantum dots and the microscopic origin of the effect is explained. Realistic eight band k.p simulations quantitatively account for our observations, simultaneously reproducing the exciton transition energy, DC Stark shift, diamagnetic shift and g-factor tunability for model dots with the measured size and a comparatively low In-composition of x(In)~35% near the dot apex. We show that the observed g-factor tunability is dominated by the hole, the electron contributing only weakly. The electric field induced perturbation of the hole wavefunction is shown to impact upon the g-factor via orbital angular momentum quenching, the change of the In:Ga composition inside the envelope function playing only a minor role. Our results provide design rules for growing self-assembled quantum dots for electrical spin manipulation via electrical g-factor modulation
    • 

    corecore