4,224 research outputs found

    Time comparison via OTS-2

    Get PDF
    The time comparisons carried out via OTS-2 between the Technical University Graz (Austria) and the Van Swinden Laboratory Delft (Netherlands) are discussed. The method is based on the use of the synchronization pulse in the TV-frame of the daily evening broadcasting of a French TV-program to Northern Africa. Corrections, as a consequence of changes in the position of the satellite coordinates are applied weekly after reception of satellite coordinates. A description of the method is given as well as some of the particular techniques used in both the participating laboratories. Preliminary results are presented

    Climate model simulation of winter warming and summer cooling following the 1991 Mount Pinatubo volcanic eruption

    No full text
    We simulate climate change for the 2-year period following the eruption of Mount Pinatubo in the Philippines on June 15, 1991, with the ECHAM4 general circulation model (GCM). The model was forced by realistic aerosol spatial-time distributions and spectral radiative characteristics calculated using Stratospheric Aerosol, and Gas Experiment II extinctions and Upper Atmosphere Research Satellite-retrieved effective radii. We calculate statistical ensembles of GCM simulations with and without volcanic aerosols for 2 years after the eruption for three different sea surface temperatures (SSTs): climatological SST, El Nino-type SST of 1991-1993, and La Nina-type SST of 1984-1986. We performed detailed comparisons of calculated fields with observations, We analyzed the atmospheric response to Pinatubo radiative forcing and the ability of the GCM to reproduce it with different SSTs. The temperature of the tropical lower stratosphere increased by 4 K because of aerosol absorption of terrestrial longwave and solar near-infrared radiation. The heating is larger than observed, but that is because in this simulation we did not account for quasi-biennial oscillation (QBO) cooling and the cooling effects of volcanically induced ozone depletion. We estimated that both QBO and ozone depletion decrease the stratospheric temperature by about 2 K. The remaining 2 K stratospheric warming is in good agreement with observations. By comparing the runs with the Pinatubo aerosol forcing with those with no aerosols, we find that the model calculates a general cooling of the global troposphere, but with a clear winter warming pattern of surface air temperature over Northern Hemisphere continents. This pattern is consistent with the observed temperature patterns. The stratospheric heating and tropospheric summer cooling are directly caused by aerosol radiative effects, but the winter warming is indirect, produced by dynamical responses to the enhanced stratospheric latitudinal temperature gradient. The aerosol radiative forcing, stratospheric thermal response, and summer tropospheric cooling do not depend significantly on SST. The stratosphere-troposphere dynamic interactions and tropospheric climate response in winter are sensitive to SST

    Structure and transport in multi-orbital Kondo systems

    Full text link
    We consider Kondo impurity systems with multiple local orbitals, such as rare earth ions in a metallic host or multi--level quantum dots coupled to metallic leads. It is shown that the multiplet structure of the local orbitals leads to multiple Kondo peaks above the Fermi energy EFE_F, and to ``shadow'' peaks below EFE_F. We use a slave boson mean field theory, which recovers the strong coupling Fermi liquid fixed point, to calculate the Kondo peak positions, widths, and heights analytically at T=0, and NCA calculations to fit the temperature dependence of high--resolution photoemission spectra of Ce compounds. In addition, an approximate conductance quantization for transport through multi--level quantum dots or single--atom transistors in the Kondo regime due to a generalized Friedel sum rule is demonstrated.Comment: 4 pages, 3 figures. Invited article, 23rd International Conference on Low Temperature Physics LT23, Hiroshima, Japan 200

    Bridge maintenance robotic arm: Capacitive sensor for obstacle ranging in particle laden air

    Full text link
    This paper describes an Adaptive Capacitive Sensor Network for Obstacle Ranging (ACSOR) that is intended to provide entire arm encompassing obstacle range data for a robotic arm conducting the task of sandblasting a bridge. A multi-channel capacitive sensor capable of dynamic obstacle ranging in air heavily laden with lead contaminated sandblasting refuse has been developed. Experimental results have shown the ACSOR's working range to be 50cm, that it is relatively immune from airborne lead contaminated sandblasting refuse and that it is capable of ranging an obstacle 21cm away whilst fitted to a robotic arm moving at 2cm/s with an obstacle range error of less than 1cm

    An algorithm for surface growing from laser scan generated point clouds

    Full text link
    In robot applications requiring interaction with a partially/unknown environment, mapping is of paramount importance. This paper presents an effective surface growing algorithm for map building based on laser scan generated point clouds. The algorithm directly converts a point cloud into a surface and normals form which sees a significant reduction in data size and is in a desirable format for planning the interaction with surfaces. It can be used in applications such as robotic cleaning, painting and welding. © 2007 Springer-Verlag Berlin Heidelberg

    Uncertainty Estimates for Theoretical Atomic and Molecular Data

    Get PDF
    Sources of uncertainty are reviewed for calculated atomic and molecular data that are important for plasma modeling: atomic and molecular structure and cross sections for electron-atom, electron-molecule, and heavy particle collisions. We concentrate on model uncertainties due to approximations to the fundamental many-body quantum mechanical equations and we aim to provide guidelines to estimate uncertainties as a routine part of computations of data for structure and scattering.Comment: 65 pages, 18 Figures, 3 Tables. J. Phys. D: Appl. Phys. Final accepted versio

    Two-channel Kondo physics due to As vacancies in the layered compound ZrAs1.58Se0.39

    Full text link
    We address the origin of the magnetic-field independent -|A| T^{1/2} term observed in the low-temperature resistivity of several As-based metallic systems of the PbFCl structure type. For the layered compound ZrAs_{1.58}Se_{0.39}, we show that vacancies in the square nets of As give rise to the low-temperature transport anomaly over a wide temperature regime of almost two decades in temperature. This low-temperature behavior is in line with the non-magnetic version of the two-channel Kondo effect, whose origin we ascribe to a dynamic Jahn-Teller effect operating at the vacancy-carrying As layer with a C_4 symmetry. The pair-breaking nature of the dynamical defects in the square nets of As explains the low superconducting transition temperature T_{\rm{c}}\approx 0.14 K of ZrAs_{1.58}Se_{0.39}, as compared to the free-of-vacancies homologue ZrP_{1.54}S_{0.46} (T_{\rm{c}}\approx 3.7 K). Our findings should be relevant to a wide class of metals with disordered pnictogen layers.Comment: 17 pages, 8 figures; submitte

    Monte Carlo simulation of SU(2) Yang-Mills theory with light gluinos

    Get PDF
    In a numerical Monte Carlo simulation of SU(2) Yang-Mills theory with light dynamical gluinos the low energy features of the dynamics as confinement and bound state mass spectrum are investigated. The motivation is supersymmetry at vanishing gluino mass. The performance of the applied two-step multi-bosonic dynamical fermion algorithm is discussed.Comment: latex, 48 pages, 16 figures with epsfi
    corecore