113 research outputs found

    The Eta-prime and Cooling with Staggered Fermions

    Full text link
    We present a calculation of the mass of the eta-prime meson using quenched and dynamical staggered fermions. We also discuss the effects of "cooling" and suggest its use as a quantitative tool.Comment: 4 pages, LaTeX with 7 EPS figs, contribution to Lattice 9

    Effect of Improving the Lattice Gauge Action on QCD Topology

    Get PDF
    We use lattice topology as a laboratory to compare the Wilson action (WA) with the Symanzik-Weisz (SW) action constructed from a combination of (1x1) and (1x2) Wilson loops, and the estimate of the renormalization trajectory (RT) from a renormalization group transformation (RGT) which also includes higher representations of the (1x1) loop. Topological charges are computed using the geometric (L\"uscher's) and plaquette methods on the uncooled lattice, and also by using cooling to remove ultraviolet artifacts. We show that as the action improves by approaching the RT, the topological charges for individual configurations computed using these three methods become more highly correlated, suggesting that artificial lattice renormalizations to the topological susceptibility can be suppressed by improving the action.Comment: 4 pages, 4 figures, poster presented at LATTICE96(improvement

    Delta I=1/2 rule from staggered fermions

    Full text link
    We present our latest results for the Delta I=1/2 rule, obtained on quenched ensembles with beta=6.0 and 6.2, and a set of N_f=2 configurations with beta=5.7. The statistical noise is quite under control. We observe an enhancement of the Delta I=1/2 amplitude consistent with experiment, although the systematic errors are still large. We also present a non-perturbative determination of Z_P, Z_S and the strange quark mass. We briefly discuss our progress in calculating epsilon-prime.Comment: LATTICE98(matrixelement

    Weak matrix elements for CP violation

    Full text link
    We present preliminary results of matrix elements of four-fermion operators relevant to the determination of e and e'/e using staggered fermions.Comment: 3 pages, 4 figures, Lattice 2001 (Hadronic Matrix Elements

    Staggered fermion matrix elements using smeared operators

    Get PDF
    We investigate the use of two kinds of staggered fermion operators, smeared and unsmeared. The smeared operators extend over a 444^4 hypercube, and tend to have smaller perturbative corrections than the corresponding unsmeared operators. We use these operators to calculate kaon weak matrix elements on quenched ensembles at β=6.0\beta=6.0, 6.2 and 6.4. Extrapolating to the continuum limit, we find BK(NDR,2GeV)=0.62±0.02(stat)±0.02(syst)B_K(NDR, 2 GeV)= 0.62\pm 0.02(stat)\pm 0.02(syst). The systematic error is dominated by the uncertainty in the matching between lattice and continuum operators due to the truncation of perturbation theory at one-loop. We do not include any estimate of the errors due to quenching or to the use of degenerate ss and dd quarks. For the ΔI=3/2\Delta I = {3/2} electromagnetic penguin operators we find B7(3/2)=0.62±0.03±0.06B_7^{(3/2)} = 0.62\pm 0.03\pm 0.06 and B8(3/2)=0.77±0.04±0.04B_8^{(3/2)} = 0.77\pm 0.04\pm 0.04. We also use the ratio of unsmeared to smeared operators to make a partially non-perturbative estimate of the renormalization of the quark mass for staggered fermions. We find that tadpole improved perturbation theory works well if the coupling is chosen to be \alpha_\MSbar(q^*=1/a).Comment: 22 pages, 1 figure, uses eps
    • …
    corecore