1,581 research outputs found

    Quantum walks on general graphs

    Full text link
    Quantum walks, both discrete (coined) and continuous time, on a general graph of N vertices with undirected edges are reviewed in some detail. The resource requirements for implementing a quantum walk as a program on a quantum computer are compared and found to be very similar for both discrete and continuous time walks. The role of the oracle, and how it changes if more prior information about the graph is available, is also discussed.Comment: 8 pages, v2: substantial rewrite improves clarity, corrects errors and omissions; v3: removes major error in final section and integrates remainder into other sections, figures remove

    Bounds for mixing time of quantum walks on finite graphs

    Full text link
    Several inequalities are proved for the mixing time of discrete-time quantum walks on finite graphs. The mixing time is defined differently than in Aharonov, Ambainis, Kempe and Vazirani (2001) and it is found that for particular examples of walks on a cycle, a hypercube and a complete graph, quantum walks provide no speed-up in mixing over the classical counterparts. In addition, non-unitary quantum walks (i.e., walks with decoherence) are considered and a criterion for their convergence to the unique stationary distribution is derived.Comment: This is the journal version (except formatting); it is a significant revision of the previous version, in particular, it contains a new result about the convergence of quantum walks with decoherence; 16 page

    Coherent transport on Apollonian networks and continuous-time quantum walks

    Full text link
    We study the coherent exciton transport on Apollonian networks generated by simple iterative rules. The coherent exciton dynamics is modeled by continuous-time quantum walks and we calculate the transition probabilities between two nodes of the networks. We find that the transport depends on the initial nodes of the excitation. For networks less than the second generation the coherent transport shows perfect revivals when the initial excitation starts at the central node. For networks of higher generation, the transport only shows partial revivals. Moreover, we find that the excitation is most likely to be found at the initial nodes while the coherent transport to other nodes has a very low probability. In the long time limit, the transition probabilities show characteristic patterns with identical values of limiting probabilities. Finally, the dynamics of quantum transport are compared with the classical transport modeled by continuous-time random walks.Comment: 5 pages, 6 figues. Submitted to Phys. ReV.

    Conditional Quantum Walk and Iterated Quantum Games

    Full text link
    Iterated bipartite quantum games are implemented in terms of the discrete-time quantum walk on the line. Our proposal allows for conditional strategies, as two rational agents make a choice from a restricted set of two-qubit unitary operations. Several frequently used classical strategies give rise to families of corresponding quantum strategies. A quantum version of the Prisoner's Dilemma in which both players use mixed strategies is presented as a specific example. Since there are now quantum walk physical implementations at a proof-of principle stage, this connection may represent a step towards the experimental realization of quantum games.Comment: Revtex 4, 6 pages, 3 figures. Expanded version with one more figure and updated references. Abstract was rewritte

    Effects of non-local initial conditions in the Quantum Walk on the line

    Full text link
    We report an enhancement of the decay rate of the survival probability when non-local initial conditions in position space are considered in the Quantum Walk on the line. It is shown how this interference effect can be understood analytically by using previously derived results. Within a restricted position subspace, the enhanced decay is correlated with a maximum asymptotic entanglement level while the normal decay rate corresponds to initial relative phases associated to a minimum entanglement level.Comment: 5 pages, 1 figure, Elsevier style, to appear in Physica

    Continuous-time quantum walks on one-dimension regular networks

    Full text link
    In this paper, we consider continuous-time quantum walks (CTQWs) on one-dimension ring lattice of N nodes in which every node is connected to its 2m nearest neighbors (m on either side). In the framework of the Bloch function ansatz, we calculate the spacetime transition probabilities between two nodes of the lattice. We find that the transport of CTQWs between two different nodes is faster than that of the classical continuous-time random walk (CTRWs). The transport speed, which is defined by the ratio of the shortest path length and propagating time, increases with the connectivity parameter m for both the CTQWs and CTRWs. For fixed parameter m, the transport of CTRWs gets slow with the increase of the shortest distance while the transport (speed) of CTQWs turns out to be a constant value. In the long time limit, depending on the network size N and connectivity parameter m, the limiting probability distributions of CTQWs show various paterns. When the network size N is an even number, the probability of being at the original node differs from that of being at the opposite node, which also depends on the precise value of parameter m.Comment: Typos corrected and Phys. ReV. E comments considered in this versio

    Encoded Universality for Generalized Anisotropic Exchange Hamiltonians

    Get PDF
    We derive an encoded universality representation for a generalized anisotropic exchange Hamiltonian that contains cross-product terms in addition to the usual two-particle exchange terms. The recently developed algebraic approach is used to show that the minimal universality-generating encodings of one logical qubit are based on three physical qubits. We show how to generate both single- and two-qubit operations on the logical qubits, using suitably timed conjugating operations derived from analysis of the commutator algebra. The timing of the operations is seen to be crucial in allowing simplification of the gate sequences for the generalized Hamiltonian to forms similar to that derived previously for the symmetric (XY) anisotropic exchange Hamiltonian. The total number of operations needed for a controlled-Z gate up to local transformations is five. A scalable architecture is proposed.Comment: 11 pages, 4 figure

    Perdeuterated cyanobiphenyl liquid crystals for infrared applications

    Get PDF
    Perdeuterated 4'-pentyl-4-cyanobiphenyl (D5CB) was synthesized and its physical properties evaluated and compared to those of 5CB. D5CB retains physical properties similar to those of 5CB, such as phase transition temperatures, dielectric constants, and refractive indices. An outstanding feature of D5CB is that it exhibits a much cleaner and reduced infrared absorption. Perdeuteration, therefore, extends the usable range of liquid crystals to the mid infrared by significantly reducing the absorption in the near infrared, which is essential for telecom applications

    Simulating adiabatic evolution of gapped spin systems

    Full text link
    We show that adiabatic evolution of a low-dimensional lattice of quantum spins with a spectral gap can be simulated efficiently. In particular, we show that as long as the spectral gap \Delta E between the ground state and the first excited state is any constant independent of n, the total number of spins, then the ground-state expectation values of local operators, such as correlation functions, can be computed using polynomial space and time resources. Our results also imply that the local ground-state properties of any two spin models in the same quantum phase can be efficiently obtained from each other. A consequence of these results is that adiabatic quantum algorithms can be simulated efficiently if the spectral gap doesn't scale with n. The simulation method we describe takes place in the Heisenberg picture and does not make use of the finitely correlated state/matrix product state formalism.Comment: 13 pages, 2 figures, minor change

    ENSO-controlled flooding in the Parana River (1904-1991)

    Get PDF
    • …
    corecore