153 research outputs found

    Cloning and sequence analysis of cDNAs encoding the cytosolic precursors of subunits GapA and GapB of chloroplast glyceraldehyde-3-phosphate dehydrogenase from pea and spinach

    Get PDF
    Chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is composed of two different subunits, GapA and GapB. cDNA clones containing the entire coding sequences of the cytosolic precursors for GapA from pea and for GapB from pea and spinach have been identified, sequenced and the derived amino acid sequences have been compared to the corresponding sequences from tobacco, maize and mustard. These comparisons show that GapB differs from GapA in about 20% of its amino acid residues and by the presence of a flexible and negatively charged C-terminal extension, possibly responsible for the observed association of the enzyme with chloroplast envelopes in vitro. This C-terminal extension (29 or 30 residues) may be susceptible to proteolytic cleavage thereby leading to a conversion of chloroplast GAPDH isoenzyme I into isoenzyme II. Evolutionary rate comparisons at the amino acid sequence level show that chloroplast GapA and GapB evolve roughly two-fold slower than their cytosolic counterpart GapC. GapA and GapB transit peptides evolve about 10 times faster than the corresponding mature subunits. They are relatively long (68 and 83 residues for pea GapA and spinach GapB respectively) and share a similar amino acid framework with other chloroplast transit peptides

    The Family Name as Socio-Cultural Feature and Genetic Metaphor: From Concepts to Methods

    Get PDF
    A recent workshop entitled The Family Name as Socio-Cultural Feature and Genetic Metaphor: From Concepts to Methods was held in Paris in December 2010, sponsored by the French National Centre for Scientific Research (CNRS) and by the journal Human Biology. This workshop was intended to foster a debate on questions related to the family names and to compare different multidisciplinary approaches involving geneticists, historians, geographers, sociologists and social anthropologists. This collective paper presents a collection of selected communications

    High quality copy number and genotype data from FFPE samples using Molecular Inversion Probe (MIP) microarrays

    Get PDF
    BACKGROUND:A major challenge facing DNA copy number (CN) studies of tumors is that most banked samples with extensive clinical follow-up information are Formalin-Fixed Paraffin Embedded (FFPE). DNA from FFPE samples generally underperforms or suffers high failure rates compared to fresh frozen samples because of DNA degradation and cross-linking during FFPE fixation and processing. As FFPE protocols may vary widely between labs and samples may be stored for decades at room temperature, an ideal FFPE CN technology should work on diverse sample sets. Molecular Inversion Probe (MIP) technology has been applied successfully to obtain high quality CN and genotype data from cell line and frozen tumor DNA. Since the MIP probes require only a small (~40 bp) target binding site, we reasoned they may be well suited to assess degraded FFPE DNA. We assessed CN with a MIP panel of 50,000 markers in 93 FFPE tumor samples from 7 diverse collections. For 38 FFPE samples from three collections we were also able to asses CN in matched fresh frozen tumor tissue.RESULTS:Using an input of 37 ng genomic DNA, we generated high quality CN data with MIP technology in 88% of FFPE samples from seven diverse collections. When matched fresh frozen tissue was available, the performance of FFPE DNA was comparable to that of DNA obtained from matched frozen tumor (genotype concordance averaged 99.9%), with only a modest loss in performance in FFPE.CONCLUSION:MIP technology can be used to generate high quality CN and genotype data in FFPE as well as fresh frozen samples.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]

    Determination of steady-state mRNA levels of individual chlorophyll a/b binding protein genes of the tomato cab gene family

    Full text link
    The steady-state levels of mRNA produced by 14 genes encoding members of the tomtato chlorophyll a/b binding protein family were quantified. All genes were found to be expressed in leaf tissue, but the mRNAs accumulated to significantly different levels. The transcripts of cab 1A, cab 1B, cab 3A and cab 3B, encoding the Type I LHC proteins of photosystem II, are abundant, while low levels were measured for mRNAs encoding the Type II LHC II and the LHC I proteins. Sequences from the 5′ upstream regions (−400 to translational start) of some cab genes were determined in this study, and a total of 16 tomato cab gene promoters for which sequences are now available were analyzed. Significant sequence conservation was found for those genes which are tandemly linked on the chromosome. However, the level of sequence conservation is different for the different cab subfamilies, e.g. 85% similarity between cab 1A and cab 1D vs. 45% sequence similarity between cab 3A and cab 3C upstream sequences. Characteristic GATA repeats with a conserved spacing were found in 5′ upstream sequences of cab 1AD, cab 3 A-C, cab 11 and cab 12. The consensus sequence CCTTATCAT, which is believed to mediate light responsiveness, was found at different locations in the upstream sequences of cab 6B, cab 7, cab 8, cab 9, cab 10A, cab 10B and cab 11. In 11 out of 15 genes the transcription initiation site was found to center on the triplet TCA.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47581/1/438_2004_Article_BF00280298.pd

    The tomato Cab -4 and Cab -5 genes encode a second type of CAB polypeptides localized in Photosystem II

    Full text link
    The photosynthetic apparatus of plant chloroplasts contains two photosystems, termed Photosystem I (PSI) and Photosystem II (PSII). Both PSI and PSII contain several types of chlorophyll a/b-binding (CAB) polypeptides, at least some of which are structurally related. It has been previously shown that multiple genes encoding one type of PSII CAB polypeptides exist in the genome of many higher plants. In tomato, there are at least eight such genes, distributed in three independent loci. Genes encoding a second type of CAB polypeptides have been isolated from several plant species, but the precise location of the gene products has not been determined. Here we show that tomato has two unlinked genes encoding this second type and that this type of CAB polypeptide is also localized in PSII.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43458/1/11103_2004_Article_BF00015643.pd
    corecore