3,416 research outputs found

    On self-similarity of premonitory patterns in the regions of natural and induced seismicity

    Get PDF
    Anticipating the scale invariance of rock fracturing processes, we applied Keilis-Borok's algorithm M8, originally designed for identifying times of increased probability (TIPS) of occurrence of strong earthquakes (M < 8.0), retrospectively to Koyna earthquakes which occurred in the region after the impoundment of the Shivaji Sagar reservoir in 1962. The algorithm which enables diagnosis of TIPS from the 7th year onwards after the commencement of the earliest available data set showed that the 5.3 magnitude earthquake of 20 September 1980 indeed occurred within a time of increased probability. This result, apart from its potential application to recognizing future TIPS in the region, points to selfsimilarity between the premonitory patterns of natural and induced earthquakes and to scale-invariant nature of their processes. Further, a typical precursory rise in seismicity followed by a relative quiescence was also found to precede all the three larger earthquakes of the sequence

    Inversion of micro earthquake arrival time data

    Get PDF
    The paper presents a generalised inverse approach to determine the spatio-temporal coordinates of microearthquake events from wave kinematics data consistmg of P-wave arrival times recorded by an array of seismographs. It is shown how a generalised inverse can be constructed for this problem so that iterations required to obtain a least squares solution become stabilised. The analysis further shows how well model parameters seduced from a given data set may be resolved and delineated their correspondence with data errors

    Changing Plant Architecture and Density can Increase Chickpea Productivity and Facilitate for Mechanical Harvesting

    Get PDF
    Tall and erect chickpea cultivar HC 5 (Haryana Chana 5) was primarily bred for inter-cropping with autumn planted sugarcane. Cultivar HC 5 is distinctly different in morphology from traditional bushy or semi-spreading chickpea cultivars and it is found suitable for machine harvesting. However, a general recommended planting density (30 cm × 10 cm) is being followed for cv. HC 5 as well. In this study, we hypothesized that high-density planting can improve crop productivity and also improve the plant architecture for mechanical harvesting. To test this hypothesis, four plant spacing treatments (30 cm × 10 cm, 30 cm × 7.5 cm, 22.5 cm × 10 cm, and 22.5 cm × 7.5 cm) were evaluated in two chickpea cultivars (HC 5 and JAKI 9218) for crop growth, grain yield and the desirable plant traits for mechanical harvesting. The highest grain yield of cv. HC 5 was observed with 22.5 cm × 10 cm spacing that increased the grain yield by 9% (p < 0.05) over plant spacing of 30 cm × 10 cm (conventional); this indicates that high-density planting could increase the productivity of the cv. HC 5. Where grain yield of cv. JAKI 9218 was reduced (p < 0.05) with the increase in planting density over 30 cm × 10 cm. Increased grain yield of cv. HC 5 with 22.5 cm × 10 cm spacing over 30 cm × 10 cm was mainly attributed to increase in plant density (33%); however, all the plant attributes (primary branch, secondary branch, pod plant−1) were reduced as compared to plant spacing of 30 cm × 10 cm. The decrease in intra-row spacing of cv. HC 5 resulted in a strong adverse effect on plant growth and yield parameters as compared to inter-row spacing and thus not recommended. High-density planting increased the plant height (erectness) and ground clearance of cv. HC 5 (height of first pod) (~ 30 cm), an essential prerequisite for mechanical harvesting, but not in cv. JAKI 9218. Hence, cv. HC 5 requires a dense planting for higher yield and appropriate plant structure for mechanical harvesting. Therefore, it is recommended to work out the optimum planting geometry/plant population to realize the potential yield of cultivars bred for mechanical harvesting

    Multi-objective Dual-Sale Channel Supply Chain Network Design Based on NSGA-II

    Get PDF
    [[abstract]]In this study, we propose a two-echelon multi-objective dual-sale channel supply chain network (DCSCN) model. The goal is to determine (i) the set of installed DCs, (ii) the set of customers the DC should work with, how much inventory each DC should order and (iv) the distribution routes for physical retailers or online e-tailers (all starting and ending at the same DC). Our model overcomes the drawback by simultaneously tackling location and routing decisions. In addition to the typical costs associated with facility location and the inventory-related costs, we explicitly consider the pivotal routing costs between the DCs and their assigned customers. Therefore, a multiple objectives location-routing model involves two conflicting objectives is initially proposed so as to permit a comprehensive trade-off evaluation. To solve this multiple objectives programming problem, this study integrates genetic algorithms, clustering analysis, Non-dominated Sorting Genetic Algorithm II (NSGA-II). NSGA-II searches for the Pareto set. Several experiments are simulated to demonstrate the possibility and efficacy of the proposed approach.[[notice]]補正完畢[[incitationindex]]EI[[booktype]]紙

    Unparticle Physics in Single Top Signals

    Get PDF
    We study the single production of top quarks in e+e,epe^+e^-, ep and pppp collisions in the context of unparticle physics through the Flavor Violating (FV) unparticle vertices and compute the total cross sections for single top production as functions of scale dimension d_{\U}. We find that among all, LHC is the most promising facility to probe the unparticle physics via single top quark production processes.Comment: 14 pages, 10 figure

    Promotion of Improved Chickpea Varieties In Rice-Based Cropping Systems of Smallholder Farmers in Odisha. 2014-2015 Annual Accomplishment Report (July 2014-June 2015) and 2015-16 Physical Targets (July 2015-June 2016)

    Get PDF
    Chickpea, pigeonpea, black gram and green gram are among the major pulses covering 1.3 m ha during Rabi in 30 districts of Odisha. However, the productivity is stagnant at 508 kg/ha which is well below the national average of 786 kg/ha. Chickpea is widely grown in Odisha but only 41,910 ha are sown during Rabi due to nonavailability of quality seeds. The average productivity is recorded at 780 kg/ha. The chickpea seed system in Odisha is not well established and this forces the smallholder farmers to save their own seeds year after year or to get it from other farmers as there is no proper access to good seeds. Approximately 80-90% of all planting material used is largely sourced from farmers’ saving seed from own harvest and using them for re-sowing, seed sharing, bartering and selling..

    Legumes Seed System in Asia: A Case in India

    Get PDF
    Legumes (Leguminosae family) seed system in India consists of the informal, formal and the integrated seed sector. However, the informal seed sector dominates the seed production system. The majority of farmers who grow legumes particularly as dry seeds (in short pulses), save a part of their produce (about 80-90%) as seed requirement. Although, the private sector is increasing its share of the market, it is the farmers’ sector (farmer-saved seed and exchange systems) that produces 70% of the quality seed. Quality seeds are labeled as ‘truthful’ seeds when farmers follow the recommended package of practices in order to maintain the level of genetic purity of legumes. In the formal seed sector, private companies respond to commercial incentives on hybrids of high-value seeds. However, the existence of the developed formal seed sector at the national level cannot guarantee small-farmer seed security at the community and household levels. The integrated approach that takes into cognizance the formal and informal seed sector in breeding, seed production and distribution has shown to have promising potential for improving seed supply to smallholder farmers. Moreover, any seed system, for that matter, requires a regulatory framework as well as a seed policy that considers regulations of an expanding and diversifying seed sector for the benefit of the farmers engaged in the seed production system

    Water scarcity effects on equitable water distribution and land use in a major irrigation project - case study in India

    Get PDF
    In many river basins, upstream development and interannual variations in rainfall can cause both episodic and chronic shortages in water supplies downstream. Continued rapid development of surface and groundwater throughout the Krishna Basin in southern India resulted in historically low inflows to the main canals of the Nagarjuna Sagar irrigation project (8,955 km2) during a recent drought (2002-2004). This paper presents an integrated approach to assess how cropping patterns and the spatial equity of canal flow changed with water supply shocks in the left canal command area (3,592 km2) of Nagarjuna Sagar. We combined 3 years (2000-2003) of canal release data with census statistics and high temporal resolution (8-10 days) moderate resolution imaging spectrometer (MODIS) 500-m resolution satellite imagery. The impact of water scarcity on land use pattern, delineated by MODIS images with moderate spatial resolution, was comparable with the census statistics, while the MODIS data also identified areas with changes and delays in the rice crop area, which is critical in assessing the impact of canal operations. A 60% reduction in water availability during the drought resulted in 40% land being fallowed in the left-bank canal command area. The results suggest that head reach areas receiving high supply rates during a normal year experienced the highest risks of fluctuations in water supply and cropped area during a water short year compared to downstream areas, which had chronically low water supply, and better adaptive responses by farmers. Contrary to expectations, the spatial distribution of canal flows among the three major zones of the command area was more equitable during low-flow years due to decreased flow at the head reach of the canal and relatively smaller decreases in tail-end areas. The findings suggested that equitable allocations could be achieved by improving the water distribution efficiency of the canal network during normal years and by crop diversification and introduction of alternative water sources during water shortage years. The study identified areas susceptible to decreases in water supplies by using modern techniques, which can help in decision-making processes for equitable water allocation and distribution and in developing strategies to mitigate the effects of water supply shocks on cropping patterns and rural livelihoods

    Constraints on Astro-unparticle Physics from SN 1987A

    Full text link
    SN 1987A observations have been used to place constraints on the interactions between standard model particles and unparticles. In this study we calculate the energy loss from the supernovae core through scalar, pseudo scalar, vector, pseudo vector unparticle emission from nuclear bremsstrahlung for degenerate nuclear matter interacting through one pion exchange. In order to examine the constraints on dU=1d_{\cal U}=1 we considered the emission of scalar, pseudo scalar, vector, pseudo vector and tensor through the pair annihilation process e+eUγe^+e^-\to {\cal U} \gamma . In addition we have re-examined other pair annihilation processes. The most stringent bounds on the dimensionless coupling constants for dU=1d_{\cal U} =1 and ΛU=mZ\Lambda_{\cal U}= m_Z are obtained from nuclear bremsstrahlung process for the pseudo scalar and pseudo-vector couplings λ0,1P4×1011\bigl|\lambda^{\cal P}_{0,1}\bigr|\leq 4\times 10^{-11} and for tensor interaction, the best limit on dimensionless coupling is obtained from e+eUγe^+ e^-\to {\cal U} \gamma and we get λT6×106\bigl|\lambda^{\cal T}\bigr| \leq 6\times 10^{-6}.Comment: 12 pages, 2 postscript figure

    Multiband optical variability of the blazar OJ 287 during its outbursts in 2015 -- 2016

    Full text link
    We present recent optical photometric observations of the blazar OJ 287 taken during September 2015 -- May 2016. Our intense observations of the blazar started in November 2015 and continued until May 2016 and included detection of the large optical outburst in December 2016 that was predicted using the binary black hole model for OJ 287. For our observing campaign, we used a total of 9 ground based optical telescopes of which one is in Japan, one is in India, three are in Bulgaria, one is in Serbia, one is in Georgia, and two are in the USA. These observations were carried out in 102 nights with a total of ~ 1000 image frames in BVRI bands, though the majority were in the R band. We detected a second comparably strong flare in March 2016. In addition, we investigated multi-band flux variations, colour variations, and spectral changes in the blazar on diverse timescales as they are useful in understanding the emission mechanisms. We briefly discuss the possible physical mechanisms most likely responsible for the observed flux, colour and spectral variability.Comment: 11 pages, 6 figures, 4 tables; Accepted for publication in MNRA
    corecore