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Abstract. The paper presents a generalised inverse approach to determine the
spatio-temporal coordinates of microearthquake events from wave kinematics
data consisting of P-wave arrival times recorded by an array of seismographs. It
is shown how a generalised inverse can be constructed for this problem so that
iterations required to obtain a least squates solution become stabilised. The ana-
lysis further shows how well model parameters seduced from a given data set may
be resolved and delincated their correspondence with data errors.

Keywords. Microearthquake: spatio-temporal coordinates; hypocentral location:
inversion.

1. Introduction

Microsarthquakes are extremsly small seismic events which are recordable mani-
festations of the entire rock deterioration regime of a region preparing for a
major earthquake. Laboratory investigations on rocks under stress have also
revealed the occurrence of numerous tiny acoustic emissions generated throughout
the sample due to micro-fracturing, leading to its eventual failure, The p'ajctern
of their spatial distribution and their progression in time, appear to gntlcxpate
the nature and location of the final rupture, whilst their slip mechanisms are
consistent with the ambient stress field. Considerable interest has qonscqut;ntly
centred on the monitoring of microearthquakes in seismically active regions,
towards identifying their premonitory features for .eatthquake pr:adn?uon.

The determination of the spatio-temporal coordinates of a seismiC .event, of
its physical mechanism, as well as of the matetiallpropertles of thh,e m:?;g;n,fic‘f:;
ground displacements recorded ata num‘per of points on the eart t_s suof ) , forms
an inverse problem. The present paper 1 devoted to the construction fe 5;1ocity
lised inverse for determining the first of these unknowns for an assum

structure and to elucidating the nature of possible solutions when the data set 1s

inadequate or inaccuraie. o ]
Hy;locentral location of a microcmrthquakc source from arrival Btnﬁe ;iga;g c;lllglcn
ted in its vieinity, has been attempted by a pumber of workers (Bo ;
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1960; Nordquist 1962; Cisternas 1963; Eaten 1969; Lee and Lahr 1972;_ Peters
and Crosson 1972; Rai 1977). Flinn (1960) analysed Ithe prob_lem as ﬁttm_g the
observed p, and s, arrival times with thosnt predicted theoretwa}kly a;‘ccordmg. to
a least squares optimisation. Eaten (1969) %ncorporate.d Py Sy p*, 5%, p, anq S,
phases and used Geiger’s method for optimising squarfad arrival time discrepancies.
Lee and Lahr (1972) used stepwise multiple regression. Most of _these a1.1tho?s
modelled the earth’s crust as a horizontally-layered s.truct.ure. I_{al (1977 in }_ns
model introduced a superficial sedimentary formation in which the _veloclty
increased exponentially with depth. Rai (1977) also attempte(_i aray traq}ng tech-
nique to account for inhomogeneities of more complex na’Fure in t1.1e medlum.. A
usual perturbing factor is the rapidly changing rel;ef partlcglarly in m.ountamo.us
terrain such as the Himalayan, which can introduce considerable discrepancies
in the arrival times. For greater accuracy, however, the gross 'sttruqture of the
crust adopted for analysis of microearthquak'e data, must be derived from local
data, keeping in view the lateral variations in the crust.

2. Statement of the problem

Arrival times of P-waves emanating from a microearthquake source are recorded
at a number of stations on the surface of the earth by a network.of micro-
earthquake recorders. The problem is to deduce from these, the location of the
event and its time of occurrence.

2.1. Formulation of the problem

Let a seismic event occur at coordinates (x,, y,, Zy, 1o) in a horizontally stratified
earth, the depth-to-layer interfaces being D (L) and velocities therein equal to
V(D). The travel time T, taken by the P-wave from this source to arrive at the
ith station (X,, Y, Z,) can be expressed as a functiona] of two parameter vectors.

Fi=F(P,X),i=1n, €))]

where P is the vector of the unknown parameters to be determined, its components
being,

P = (%, Yo, 20, 1), 2)
and X, of the layer thicknesses, velocities, and station coordinates, (ie)

X=[X,7Y, Z, V(L) D (L), 3)

i=1...n

L=1...N

Let P° be an estimated solution of P and AP the desired deviator to render
coincidence of caloulated and observed travel times. Expanding (1) in Taylor’s
series and retaining only the first term,

m
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which can be written in a matrix form as follows: "
AF =4AP,
5
where, AT =T, (P, X°) —F, (P, X) is the travel time anomaly vect(o:
(@ x 1),
AP =p, — D} is the parameter correction vector (m x 1),
and _ 3G, (2, X)| P = Ptis the (n x m) system matrix of influence

op, X = X° coefficients.
i=1n; j=1m

The pro-blem as posed above has been linearised in AP to exploit the faciliti
of a‘ maj:gx formulation, although it means that the final solution wo ;(;. 1§S
f)btiur_md iteratively by updating the vector Po after very iteration. In au { :
iteration, however, AP is obtained simply from the relation AP = GAG g;:ien
G will be identified as an inverse of the matrix 4. e

‘When the number of data elements » is equal to the number m of parameters
T.o be resolved and the determinant of A is non-zero, the matrix 4 hasa unique
%nvcrse. In all other cases one must choose from o set of its possible gcnerali(ied
inverses, using criteria most suitable to the physical nature of 2 given problem
For .cxamplc, in an overdetermined problem (n > m) where A s a full ramkg
1.natr1x and AT A therefore nonsingular, one obtains (Morrison 1969) for the
inverse of 4

A7 = AT AT AT ' (6)

which turns out to be a least squares solution; for a weighted least squares solu-
tion given by

A;l i (AT Q—l A)A—l AT Q—l’ (7)

where Q is @ diagonal weighting matrix such as the covariance matrix of data
errors if they happen to be estimable. On the other hand, for an underdeter-
mined system (n < m), one obtains an inverse

Azt = AT (A AT ®

which proves to be @& solution giving a least Fuclidean length.

Indeed, there are a pumber of generalised inverses, but one making use of a
decomposition theorem by Penrose is particularly instructive. For, it enables
one to investigate on the one hand, the ° goodness* of the inverse solution yielded
by a given data set, and on the other to analyse the relative influence of various
data elements in illuminating the solution space thereby delineating desirable
trade-offs between the quality of acceptable solution and the expense of augment-

ing the data set. Accordingly (Penrose 1955)

4 = U A yr - ©)
(n x m) (n x n) (n x m) (m x m)
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where A is the diagonal matrix comprising the eigenvalues of the matrix AT 4 or
A47 arranged in descending order of magnitude, and ¥ and U are respectively
the orthogonal matrices comprising the eigenvectors of AT 4 and A4AT. Foran
overdetermined system the least squares inverse of 4 can be written following (6).

S =(VAUTUAVY) VA UT = VAU, (10)

It will be seen that the vectors of the parameter or solution space would be
proportional to the reciprocal of the eigenvalues. In case some of these happen
to be near singular, the parameter vectors will not only reflect the data errors
in 2 highly magnified space, but would also suffer wide excursions in the para-
meter space upon every iteration, thereby prevetning convergence. A modified
inverse popularised] by Lanczos (1961) which circumvents these problems, is
defined as

& = v, At Ur an
mxm  (mxp) (xp) (pxn)

where A, is a shortened version of A in (10), comprising of only p significant
eigenvalues of the latter, and V,and U, are the corresponding new eigenvectors
of AT 4 and 447.

To obtain P, one first begins by constructing the Lanczos inverse Az* choosing
a considerably shortened order of the eigenvalue matrix, comprising only the g
significant eigenvalues. After a few iterations which incidentally progress in small
steps upholding the assumption of linearity, this leads to some stationary point
in the parameter space fairly close to the final solution. The largest of the rejected
eigenvalues is then incorporated to form a new eigenvalue matrix and the above
process repeated, whereafter the next largest of the rejected cigenvalues is also
incorporated and so on, till the objective function is reduced to the same order
of magnitude as the mean Square error of observations or lower.

Whilst inclusion of ag many eigenvalues as possible is desirable to exploit
maximum information contained in the data, the iterations arc often found to
diverge upon inclusion of the smal] eigenvalues. This can be forestalled by using
a modification of Marquordt* (1963) algorithm as discussed by Johanson (1975)
which uses an estimator [(47 4 + k7)1 47)] in place of the usual [(47 4 47].
It consists in stepping back as soon as the iteration procedure is found to diverge,
Say, upon the inclusion of the (¢ + Dth eigenvalue, and adding the value A, of
t1.1e gth eigenvalue to all g eigenvalues retained, thereby defining a new (g x q)
elgenvalge n}atrix. Thus the next progression will be reduced by half in the
‘ I:?ad’ direction F/'q in the parameter space and marginally so in others. If this
fails to reverse divergence, the process is repeated by adding Aga to all eigen-
vah.ms to define yet another eigenvalue matrix and so on, till convergence is
acl}xev.ed. In rare cases, it may of course become impossible to minimise the
objective function any further, Then it serves no useful purpose to add additional
—_

* ] . .
kMalquordt algomhxp IS an optimum  algorithm which resembles the gradient method.
(k = co) wl?en the.estlmator is far from the minimum and the Newton—Raphson method (K — 0)
\\Ivhen‘ the estimator 18 near the minimum, (¢ oplimum value of K being 1-0 and 0-01—Johanson
(1977) modified this to permit an adaptive choice for the value of X in successive iteration.
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small eigenvalues since the corresponding minimisation of the objective function
would be insignificant.

The Lanczos inverse can be further modified as shown by Jackson (1972) so
as to incorporate additional information such as statistics of data errors and
limits to variations of model parameters estimated on geological grounds or from
results of some independent geo-investigations. This can be accomplished through
the use of appropriate weighting matrices.

9.2. Resolution of model parameters

Whilst the errors in estimated model parameters can be prevented from blowing
up by excluding the smaller eigenvalues in the comstruction of the estimator
A7t the corresponding forfeiture of information leads to a certain degradation
in the resolution of parameters. For, if AP, be the estimated deviator vector of
model parameters obtained through the Lanczos inverse = A7g constructed from
only ¢ significant eigenvalues, then, from (3)

AP, = A7y AT = [z 4] AP. (12)

The matrix [4754] = R is obviously a measure of the resolution of the
model parameters as AP, appears as a result of convolution of the true solu-

-tion AP with the rows of R. Ideally, the resolution matrix R is desired to be

an identity matrix whose diagonal elements are unity and off-diagonal elements
zero. But as we suspend small eigenvalues from consideration, its rows tend to
get smeared, thereby exhibiting a trade-off between resolution of model parameters
and their errors as in the case of the linear inverse theory of Backus and Gilbert
(1970).

For underdetermined systems, this trade-off may not be too significant since the
solution can never be unique and in practice drastic reduction of errors in
model parameters can be achieved by sacrificing a small loss in resolution.

2.3. Informative density

The generalised inverse formulation also enables one to explore the information
value of the data set and thereby design a data set for desired quality of infor-
mation by drawing up appropriate data collection plans. If AF, be the data set
corresponding to an estimate AP, of the model parameters obtained through the
Lanczos inverse A7% then from (5) and (12) we have

AG, = AAP, = [4 433] AF = SAT, (13)
where S = [4 A7, (14)

is obviously a measure of the information density and is therefore termed as
information density matrix. S will be an identity matrix only if n<m, when
there would be a one-to-one correspondence between the transformed data AFy
and the actual data set AYF. Otherwise the two will deviate according to the
deviation of S from an identity matrix. Once, therefore a geophysical problem
has been posed one can analyse the nature of S and so design it as to achieve
an optimum trade-off between the cost of data collection and information gained.

P. (A)—10
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2.4. The forward problem

As the purpose of the present exercise is to invert the arrival time data for the
determination of the spacio-temporal co-ordinates of the source, a specific earth
model must be a priori selected based on information regarding the velocity
structure of the crust in the area. However, for the present-layered earth model
in which the velocity increases in successively deeper layers, has been chosen to
illuminate the general nature of the problem.

Let ¥(L), D(L),L =1, N be an N-layered velocity model where ¥ (L) and
D (L) are the wave velocities in successive deeper layers and depths to the inter-
faces respectively. The focus lies in the Jth layer at a depth H below the surface
{figure 1).

Following Eaton (1969) and Katiyar (1978) expressions for the travel time of a
critically refracted wave issuing from a focus in the Jth layer at a depth H below
the surface and refracted from the top of the Mth layer, to an epicentral distance

A is given by

- L
VM)

S THR () [ () — v (D

T VoD 7D

+

L=J

s < THK () [V (M) — V(L)*]/2 _ TKI[V(M)2—V (J)2]/2 s
VoD VD) V) vV (J) )

=1

(15)

Also, the travel time of the direct wave to an epicentral distance A, from a
focus in the first layer at a depth H below the surface is given by

T=(H*+ AH/YV (D). (16)
. :2: i
@ —
T
- 5o
= x
D(1) Delta — o. G D,:
T / f V1), THK (1)
D(2)

Ho e 7/____7[ _____ [ V@
_LD( MRS / V-
)

DlU+

__&\_7/__“__7/_______VLJ_+1)
D(M) V(M-1)

D(N) VIN-1)

Figure 1. Notation used to specify the crustal velocity structures.
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Expressions for T as a function of A are quite complex when the focus lies
in the Jth layer (J/ =2, N). However, both T and A are relatively simple
functigns of sin 0; where 0, is the angle of incidence of the ray at the focus.
Denoting sin 6; =y and h = TKJ = H - D(J), T and A can be expressed as
functions of w.

J-1
N h N THK (L) V (J)
T= 231 + TV N2
7O Z vy (50— )™, )
J—-1
_ hu THK (L) u
and A= (—'—1 — uz)uz + z V(J)z ~ m)llz. (18)
L=y V(L)z

u is determined following Fermat’s principle which requires it to be so adjusted
as to cause the function T to become stationary.

The system matrix A which characterises the nature of the problem, maps
the unknown parameter-space onto the observation space. This matrix is a
scheme of  variational parameters’ or the ©influence coefficients’ which are
derivatives of the arrival times with respect to each element of the unknown
parameter set X, y, 2, ¢, individual elements being arranged columnwise, whilst
observations at different stations correspond to the individual rows of the matrix,
In other words, all the derivates of arrival times at different stations with respect
to a single unknown parameter are arranged to form one column of the matrix.
These derivatives can be obtained from equations (15), (16), (17) and (18) by
noting that

A =[x — x0)® + (i — y0)? 1Y%, (19)
and F =t,+ T

It is to be observed at this point that the three partial derivatives 0T/dxo, 0T/0yq
and dT/dz, are in fact respectively equal tq affaxo, Aoy, and oz, because travel
times are invariants of the origin time of the event.

3, Results and discussion

In order to test the performance of the generalised inverse formulation developed
here for inverting the micro-earthquake arrival time data and to examine its
capabilities in illuminating the nature of this inverse problem, theoretical data
for a given event at a depth of 20 km was generated. The velocity model chosen
for this exercise, consisted of three homogeneous horizontal layers, admitting
yelocities ¥ (1) = 5-0 km/sec, V(2) = 65 km/sec, V(3) = 8-0 km/sec, depths
to interfaces being D (1) = 0-0 km, D (2) = 30 km and D (3) = 80km. The chus
was assumed to be located in the topmost lowest velocity layer. The data points
were evenly distributed around the source upto distances of 202 km. The origin

{ime was chosen arbitrarily.
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The selected station locations and the first arrival times at different stations are
given in table 1. The system matrix 4 for the initial point in the parameter
space, representing the partial derivatives of arrival times with respect to the
unknown parameters at each station can be written' as follows:

3F[ox,  0F /3y, 0F [z, 0F /o1,

Station 1 —-0-124 —0-152 0-040  1-000
Station 2 —-0:012 —0-155 0-126  1-000
Station 3 —0-141  —0-061 —0-128 1-000
Station 4 -0-097 —0-119 —-0-128 1-000
Station 5 -0-126 —-0-088 —0-128 1-000

The condition number =; = 4;/A, and eigenvalues A2 of the matrices AAT
and A7A arranged in decreasing order of magnitude are given in table 2.

Initial estimates of the parameters and final inverted solution are given in
table 3. The epicentral distances for various stations corresponding to the initial
and final values of parameters are given in table 4.

The problem as posed above is an overdetermined one using 5 data elements
to solve for 4 unknowns. The parameter in this case can be uniquely obtained
but the model data fits the observed data only in least squares sense. The solution

Table 1. The selected station locations and the first arrival times at different

stations.

Station Station Station Time of the first arvival

name latitude longitude Year Month Day Hour Min. Sec,
STN 1 35° 38-24" 120° 46-47 78 05 12 8 5 20-40
STN 2 34" 46-84' 119° 57-15 » » i .- " 6+40
STN 3 34° 32-25" 119° 27-36’ . s ’s . v 30-27
STN 4 36° 26:05" 121° 44-57 . . ., ., A2
STN 5 35° 47-32" 121° 39-61 ys » 5 as . 34.77

Table 2. The eigenvalues and condition numbers arranged in decreasing order
of magnitudes.

Ay = 2-264 }2 = 0261 Ay = 0-066 /14 = 0-042

#y = 1-:000 1y = 8:674 N = 34:303 7y = 53-905




IlllllllIlllllllllllllllIlIIIl__,,

Inversion of microearthquake arrival time data

377

has a 4 degree of freedom but retention of all of them, whilst rendering the resolu-
tion matrix to be an identity matrix, causes the inversion scheme to diverge owing

to the presence of large condition number 7y,

parameter corrections.

which in turn results in large

Upon exclusion of the corresponding eigenvalue A4, however, the solution is

b found to converge after 9 iterations,
tions falls below 0-005.
of the objective functions
table 5.

The inversion of arrival time
contain significant information.
information density matrix
to diagonal elements.

ST

thus appear to
However, the matrix in

N

for the actual model that best fits the data.

These four points are the most
resolution of parameters, information being greatest for the nearest data point
and falling monotonically with increasing epicentral distance.
exercise greater control in determination of parameter as expected.
figure 2 (b) is in respect of the initial estimate of the
model, and the peaks of information appearing here may not be the same as
In many cases there will be a corres-
ponding progression of the peaks of information during the iterative sequence

when further change in the objective func-
The courses of corrections in individual parameter and
through the entire iteration procedure are shown in

data also neatly delineates those data points which
Figure 2 (b) shows a profile of the rows of the
which has four peaks of information corresponding

vital data points for the

Nearer data points

Table 3. Initial estimate of the paramelers and final inverted solution.

Depth. of

Origin time of Latitude of Longitude of
the eventl the epicentre the epicentre the focus
Initial :
780512854-40 35° 4-41' 120° 6-75 18:0
Final :
78051285410 35° 071 120° 0-87 19+6 *

Table 4. The epicentral distance
and final values of parameters.

for various stations corresponding to the initial

Epicentral distances in km
for initial estimate

Epicentral distance in km
for the inverted solution

22-18
8835

; 123-44
148-04

202-04

23-14
8953
124-53
149-75
202-24
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Table 5. The courses of corrections in individual parameters and of the objective
functions through the entire iteration procedure.

Tteration dx, dy, dz, dt, Objective
number (Km) (Km) (Km) (Sec) function
€ (sec)
1. —0-266 —0+305 —0-118 2636 2-633
2. —0-177 —0-203 —0-078 1-758 1-920
3. —0-118 —0-135 —0-052 1-172 1-498
4, —0-078 —0-090 —0-035 0-781 1-266
5. —0-052 —0-060 —0-023 0-521 1-128
6. —0-035 —0-040 —0-015 0:347 1-091
7. —0-023 —0-027 —0-010 0-232 1-064
8. —0-015 —0-018 —0-007 0-151 1:053
9. —0-010 —0-012 © —0-005 0-103 1-049

as evident from figure 2 (c) which represents the information density matrix for
the final model. These peaks of information are rather broad suggesting that two
or more additional data points, if included at intermediate points should greatly
improve the definition of peaks by enhancing information thereat. We also
observe from figure 2 that significant information, is contributed by a point 148 km
away from the source, This is in fact near the first critical distance (16612 km).
The fact that information is contributed substantially by data points near the
critical distance, is also corroborated by second and third row profiles.

The information density matrix proves to be instructive in analysing noisy data.
A high level of noise at data points corresponding to the information peaks may
have substantial influence on the estimation of the final model whereas noise at
points between peaks will not produce as great an effect. However, it is advan-
tageous to include intervening data points. For example, by incorporating a data
point at 202 km (vide figure 2), the information content would be substantially
enhanced at points 123 km and 146 km distant from the source. Furthermore,
redundancy in data increases the magnitude of the eigenvalues, causing them to
become better behaved. An appropriate degree of redundancy improves noise
elimination from the solution, since the least squares fitting tends to smoothen
out data errors. This is the argument for not restricting the number of data points
to four for the determination of the four unknown parameters. For, in such gz
case, whilst the information density matrix would be an identity matrix (figure 2a),
large premiums given to each of the data points corresponding to the information
peaks would tend to inflate the associated errors at these points. Incorporating
additional data points increases information content without giving undue weigh-
tage to any single data element which contribute information at a patticular point,

The eigenvectors of 44T and 474 respectively may be called data and parameter
eigenvectors of the system matrix 4 and are plotted in figure 3. The parameter
eigenvectors represent a combination of the initially chosen parameters which may
be uniquely determined while the data eigenvectors represent a combination of

|
5
|
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the original data elements. The relative magnitudes of the eigenvalues are impor-
tant in determining the error propagation in the system (Inman et af 1973). If
the data points at which the data eigenvectors are large contain a certain amount
of error and if the associated eigenvalues are small, the error will be greatly
magnified in the direction of the associated parameter eigenvector (Lanczos 1961).

Consider the eigenvectors associated with the smallest eigenvalue 1, = 0-042.
If any or all the data elements at 88, 128 and 202 km are assumed to contain some
errors, the resulting error in dy, would become rather large while their effect in
the determination of dt, or dz, which are chiefly associated with larger eigenvalues
A, = 2-264 and 1, = 0-261 would not be so serious. On the other hand any error
in data at 88 and 202 km would have a greater effect on dx, because of the associated
smaller eigenvalue A3 = 0-066.

The parameters df, is associated chiefly with the larger eigenvalue A, = 2-264
(figure 3) and all data points contribute almost uniformly to its resolution. The
parameter eigenvector associated with the eigenvalue A, = 0:261 points chiefly
along dz,; and points which receive a direct wave as well as those near the
first critical distance, are crucial for its determination. We also observe that dxe
is resolved mainly by a direct wave data point and the farthest point whilst the
resolution of dy, is mainly determined by information from the first critical distance
point and that from the farthest point. If convergence requires the rejection of

Vo N\=2.264 :
02k l I I | '
o2fs g [NeNey
-06l- «
5
06 A=0.261
o2t |, ||
eRlas [[1Reg
-06- & I
p Y
2
g 06 A=0.066 i
2 02p | |
-02H 282 |8 R0
064 ® 77 a7 F olo
X 3
%
gel
06
02l A=0.042
-02F< e @ @
ko] o
065 l 5 o % © DA
. 8 9
& - o
Parameter Data
eigenvectors  eigenvectors

Figure 3. Data and the parameter eigenvectors. Also indicated are data points

important for resolution of individual parameters.
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the two smaller eigenvalues 7, = 0-066 and Ay = 0042, the resolution of dx,
and dy, would suffer most because of their preferred association with thess
cigenvalues. The parameters associated with the largest eigenvalues are found
most aceurately and are most quickly determined by the inversion technique,
whereas those associated with the smaller eigenvalues are the least accurately
determined and converge slowly.

The effect of random noise will be to cause oscillations of dx, and dy, about
some mean value but will not be as conspicuous in the case of di, and dz,.

The least squared error in arrival times fit is 1-049 sec (table 5) which is very
nearly equal to the accuracy of arrival time data. Figure 2 (c) shows the infor-
mation density and the resolution matrices when three eigenvalues are retained.
We notice that the diagonal dominance of both the matrices and the peak
information is reduced. Also, the resolution matrix is no longer an identity
matrix. Incorporating data at intermediate points between the peaks and beyond
202 km, near the sccond critical distance point should greatly amplify the informa-
tion. This would increase the magnitudes of the eigenvalues, thereby improving
both resolution and the rate of convergence. Whereas there is always a trade-off
between the errors and resolution of the solution, a proper control of redundancy
can prove helpful in striking a balance between the two.

The generalised inverse technique can prove to be a powerful tool in the
planning of microcarthquake investigations. This automatic method requires
minimum human interaction for solving a geophysical inverse problem, and deli-
neates the significance of various data points in achieving a desired resolution and
accuracy.
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