436 research outputs found

    Hypomethylating agents in the treatment of acute myeloid leukemia: A guide to optimal use

    Get PDF
    The hypomethylating agents (HMAs), decitabine and azacitidine, are valuable treatment options in acute myeloid leukemia patients who are not eligible for intensive chemotherapy. Both agents are generally well tolerated, and complications most commonly relate to myelosuppression. Antibiotic / antifungal use, regular monitoring, and proactive patient education are important to minimize these events, and reduce the need for dose delay. Responses to HMAs are often not evident for up to 6 cycles, and there is currently no validated clinical marker for predicting response. Hence, treatment should be continued for at least 4–6 cycles to ensure that patients have sufficient opportunity to respond. Delivery of insufficient numbers of cycles is a key reason for HMA failure, and premature discontinuation must be avoided. Genetic factors offer potential for better predicting responders to HMAs in future, but require further study

    An Ultrasound Matrix Transducer for High-Frame-Rate 3-D Intra-cardiac Echocardiography

    Get PDF
    Objective: Described here is the development of an ultrasound matrix transducer prototype for high-frame-rate 3-D intra-cardiac echocardiography. Methods: The matrix array consists of 16 × 18 lead zirconate titanate elements with a pitch of 160 ”m × 160 ”m built on top of an application-specific integrated circuit that generates transmission signals and digitizes the received signals. To reduce the number of cables in the catheter to a feasible number, we implement subarray beamforming and digitization in receive and use a combination of time-division multiplexing and pulse amplitude modulation data transmission, achieving an 18-fold reduction. The proposed imaging scheme employs seven fan-shaped diverging transmit beams operating at a pulse repetition frequency of 7.7 kHz to obtain a high frame rate. The performance of the prototype is characterized, and its functionality is fully verified. Results: The transducer exhibits a transmit efficiency of 28 Pa/V at 5 cm per element and a bandwidth of 60% in transmission. In receive, a dynamic range of 80 dB is measured with a minimum detectable pressure of 10 Pa per element. The element yield of the prototype is 98%, indicating the efficacy of the manufacturing process. The transducer is capable of imaging at a frame rate of up to 1000 volumes/s and is intended to cover a volume of 70° × 70° × 10 cm. Conclusion: These advanced imaging capabilities have the potential to support complex interventional procedures and enable full-volumetric flow, tissue, and electromechanical wave tracking in the heart.</p

    Generation and quality control of lipidomics data for the alzheimers disease neuroimaging initiative cohort.

    Get PDF
    Alzheimers disease (AD) is a major public health priority with a large socioeconomic burden and complex etiology. The Alzheimer Disease Metabolomics Consortium (ADMC) and the Alzheimer Disease Neuroimaging Initiative (ADNI) aim to gain new biological insights in the disease etiology. We report here an untargeted lipidomics of serum specimens of 806 subjects within the ADNI1 cohort (188 AD, 392 mild cognitive impairment and 226 cognitively normal subjects) along with 83 quality control samples. Lipids were detected and measured using an ultra-high-performance liquid chromatography quadruple/time-of-flight mass spectrometry (UHPLC-QTOF MS) instrument operated in both negative and positive electrospray ionization modes. The dataset includes a total 513 unique lipid species out of which 341 are known lipids. For over 95% of the detected lipids, a relative standard deviation of better than 20% was achieved in the quality control samples, indicating high technical reproducibility. Association modeling of this dataset and available clinical, metabolomics and drug-use data will provide novel insights into the AD etiology. These datasets are available at the ADNI repository at http://adni.loni.usc.edu/

    Consensus recommendations for clinical assessment tools for the diagnosis of posterior cortical atrophy syndrome from the Atypical AD PIA of ISTAART

    Get PDF
    INTRODUCTION: Delay in diagnosis of posterior cortical atrophy (PCA) syndrome is common, and the lack of familiarity with assessment tools for identifying visual cortical dysfunction is a contributing factor. We propose recommendations for the approach to the evaluation of PCA clinical features during the office visit, the neuropsychological evaluation, and the research setting. A recommended screening battery for eye clinics is also proposed. METHODS: Recommendations were developed using results from a web-based survey of members of Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment (ISTAART) Atypical Alzheimer's Disease Professional Interest Area (PIA), literature review, and consensus by the PCA assessment working party of the Atypical Alzheimer's Disease PIA. RESULTS: Survey results revealed robust agreement for assessment tool preferences for PCA features, and many respondents indicated that they reserve assessment tools for use only when PCA is suspected. For some PCA features, curated tools were preferred over validated battery tools, particularly for the office visit. Consensus recommendations superseded survey preferences for two core cognitive features within the 2017 PCA diagnostic criteria. DISCUSSION: These consensus recommendations provide an evaluation framework for PCA clinical features and can facilitate timely and accurate recognition and diagnosis of PCA. Broader use of these tools should be sought, and development and validation of novel PCA clinical outcome assessments are needed to improve our understanding of atypical AD and other dementias and support the inclusion of those with PCA in treatment trials

    Prognostic Value of FLT3-Internal Tandem Duplication Residual Disease in Acute Myeloid Leukemia

    Full text link
    PURPOSE The applicability of FLT3-internal tandem duplications (FLT3-ITD) for assessing measurable residual disease (MRD) in acute myeloid leukemia (AML) in complete remission (CR) has been hampered by patient-specific duplications and potential instability of FLT3-ITD during relapse. Here, we comprehensively investigated the impact of next-generation sequencing (NGS)-based FLT3-ITD MRD detection on treatment outcome in a cohort of patients with newly diagnosed AML in relation to established prognostic factors at diagnosis and other MRD measurements, ie, mutant NPM1 and multiparameter flow cytometry. METHODS In 161 patients with de novo FLT3-ITD AML, NGS was performed at diagnosis and in CR after intensive remission induction treatment. FLT3-ITD MRD status was correlated with the cumulative incidence of relapse and overall survival (OS). RESULTS NGS-based FLT3-ITD MRD was present in 47 of 161 (29%) patients with AML. Presence of FLT3-ITD MRD was associated with increased risk of relapse (4-year cumulative incidence of relapse, 75% FLT3-ITD MRD v 33% no FLT3-ITD MRD; P < .001) and inferior OS (4-year OS, 31% FLT3-ITD MRD v 57% no FLT3-ITD MRD; P < .001). In multivariate analysis, detection of FLT3-ITD MRD in CR confers independent prognostic significance for relapse (hazard ratio, 3.55; P < .001) and OS (hazard ratio 2.51; P = .002). Strikingly, FLT3-ITD MRD exceeds the prognostic value of most generally accepted clinical and molecular prognostic factors, including the FLT3-ITD allelic ratio at diagnosis and MRD assessment by NGS-based mutant NPM1 detection or multiparameter flow cytometry. CONCLUSION NGS-based detection of FLT3-ITD MRD in CR identifies patients with AML with profound risk of relapse and death that outcompetes the significance of most established prognostic factors at diagnosis and during therapy, and furnishes support for FLT3-ITD as a clinically relevant biomarker for dynamic disease risk assessment in AML

    Commentaire

    Get PDF
    Therapeutic resistance remains the principal problem in acute myeloid leukemia (AML). We used area under receiver-operating characteristic curves (AUCs) to quantify our ability to predict therapeutic resistance in individual patients, where AUC=1.0 denotes perfect prediction and AUC=0.5 denotes a coin flip, using data from 4601 patients with newly diagnosed AML given induction therapy with 3+7 or more intense standard regimens in UK Medical Research Council/National Cancer Research Institute, Dutch–Belgian Cooperative Trial Group for Hematology/Oncology/Swiss Group for Clinical Cancer Research, US cooperative group SWOG and MD Anderson Cancer Center studies. Age, performance status, white blood cell count, secondary disease, cytogenetic risk and FLT3-ITD/NPM1 mutation status were each independently associated with failure to achieve complete remission despite no early death (‘primary refractoriness’). However, the AUC of a bootstrap-corrected multivariable model predicting this outcome was only 0.78, indicating only fair predictive ability. Removal of FLT3-ITD and NPM1 information only slightly decreased the AUC (0.76). Prediction of resistance, defined as primary refractoriness or short relapse-free survival, was even more difficult. Our limited ability to forecast resistance based on routinely available pretreatment covariates provides a rationale for continued randomization between standard and new therapies and supports further examination of genetic and posttreatment data to optimize resistance prediction in AML
    • 

    corecore