413 research outputs found

    Mode of Biochar Application to Vertisols Influences Water Balance Components and Water Use Efficiency of Maize (Zea mays L.)

    Get PDF
    Vertisols belong to a group of soils with high fertility but poor physical properties of swelling when wet and shrinking and cracking when dry. The swelling inhibits infiltration, resulting in flooding, limiting the production of upland crops. Biochar (<BC) application has been shown to reduce the shrink-swell behaviour of Vertisols. However, the mode of biochar application to these soils may affect the effectiveness of the amendment. This study investigated the water relations and maize (Zea mays L.) growth under two BC application modes: (i) biochar applied into cracks that develop with drying, C, and (ii) biochar that was surface broadcast and incorporated into the topsoil, FM. A control treatment did not receive any BC amendment. Maize was grown on the BC-amended Vertisols using the two modes of application in a greenhouse under two seasonal water regimes of 610 and 450 mm. The results showed that the proportion of total water application lost to runoff was 37%, 49% and 53% for C, FM and control treatments, respectively. Both maize yield and Water Use Efficiency (WUE), for the C treatments were significantly (p < 0.05) higher than those for FM treatments. The maize yield under the C treatments was 19% over the control. Similarly, the WUE for the C treatments was 28% above the control treatment. It is concluded that the application of biochar into cracks is a more effective way of improving the water relations and upland crop productivity and WUE in Vertisols than the traditional surface incorporation

    Potential effect of prior raccoonpox virus infection in raccoons on vaccinia-based rabies immunization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The USDA, Wildlife Services cooperative oral rabies vaccination (ORV) program uses a live vaccinia virus-vectored (genus <it>Orthopoxvirus</it>) vaccine, Raboral V-RG<sup>® </sup>(V-RG), to vaccinate specific wildlife species against rabies virus in several regions of the U.S. Several naturally occurring orthopoxviruses have been found in North America, including one isolated from asymptomatic raccoons (<it>Procyon lotor</it>). The effect of naturally occurring antibodies to orthopoxviruses on successful V-RG vaccination in raccoons is the focus of this study.</p> <p>Results</p> <p>Overall, raccoons pre-immunized (n = 10) with a recombinant raccoonpox virus vaccine (RCN-F1) responded to vaccination with V-RG with lower rabies virus neutralizing antibody (VNA) titers than those which were not pre-immunized (n = 10) and some failed to seroconvert for rabies VNA to detectable levels.</p> <p>Conclusion</p> <p>These results suggest that the success of some ORV campaigns may be hindered where raccoonpox virus or possibly other orthopoxvirus antibodies are common in wildlife species targeted for ORV. If these areas are identified, different vaccination strategies may be warranted.</p

    Location and Land use effects on Soil Carbon Accretion and Productivity in the Coastal Savanna Agro-ecological Zone of Ghana

    Get PDF
    Land use type, climate and soil properties are major determinants of soil carbon storage and productivity, especially in low-input agriculture. In this study, we investigated the interactions among these factors at four (4) locations, namely Accra Metropolis, Ga West, Ga East and Shai Osudoku, within the Coastal-Savannah agro-ecological zone of Ghana. The land use types were maize-based cropping, cassava-based cropping, woodlot/plantations and natural forests. The impact of these on soil productivity at a given location was assessed in terms of soil carbon stocks and a Soil Productivity Index (SPI). The SPI is a composite value derived from routine soil properties such as: soil texture, available water capacity, pH, cation exchange capacity, soil organic carbon, available P, exchangeable K, potentially mineralizable nitrogen, and basic cations, among others. Principal component analysis was used to select soil properties that were used to estimate SPI. The results showed that the locations differed with respect to rainfall regimes and soil types. Locations with slightly heavier soil texture and relatively higher rainfall regimes (Ga East and Shai Osudoku) had significantly higher soil carbon storage and SPI values than the lighter soil textured locations (Accra Metropolis and Ga West). With regards to land use, forest had significantly higher soil carbon storage and SPI than all the other land use types, irrespective of location. The order of soil carbon storage and SPI were: forest &gt; woodlot/plantation &gt; cassava &gt; maize. It was observed that though the Accra Metropolis location hosted the oldest forest, soil carbon was still low, apparently due to the lighter soil texture. We concluded that the soil productivity restorative ability is an interactive effect of carbon management (land use), soil texture and other properties. This interaction hitherto has not been adequately investigated, especially in low-input agriculture

    Guidelines for the deployment and implementation of manufacturing scheduling systems

    Full text link
    It has frequently been stated that there exists a gap between production scheduling theory and practice. In order to put theoretical findings into practice, advances in scheduling models and solution procedures should be embedded into a piece of software - a scheduling system - in companies. This results in a process that entails (1) determining its functional features, and (2) adopting a successful strategy for its development and deployment. In this paper we address the latter question and review the related literature in order to identify descriptions and recommendations of the main aspects to be taken into account when developing such systems. These issues are then discussed and classified, resulting in a set of guidelines that can help practitioners during the process of developing and deploying a scheduling system. In addition, identification of these issues can provide some insights to drive theoretical scheduling research towards those topics more in demand by practitioners, and thus help to close the aforementioned gap.Framiñan Torres, JM.; Ruiz García, R. (2012). Guidelines for the deployment and implementation of manufacturing scheduling systems. International Journal of Production Research. 50(7):1799-1812. doi:10.1080/00207543.2011.564670S17991812507Baek, D. H. (1999). A visualized human-computer interactive approach to job shop scheduling. International Journal of Computer Integrated Manufacturing, 12(1), 75-83. doi:10.1080/095119299130489Comesaña Benavides, J. A., & Carlos Prado, J. (2002). Creating an expert system for detailed scheduling. International Journal of Operations & Production Management, 22(7), 806-819. doi:10.1108/01443570210433562Bensana, E. 1986. An expert-system approach to industrial job-shop scheduling. In: Proceedings of the 1986 IEEE international conference on robotics and automation. 1986. Vol. 3, pp.1645–1650.Berglund, M., & Karltun, J. (2007). Human, technological and organizational aspects influencing the production scheduling process. International Journal of Production Economics, 110(1-2), 160-174. doi:10.1016/j.ijpe.2007.02.024Besbes, W., Teghem, J., & Loukil, T. (2010). Scheduling hybrid flow shop problem with non-fixed availability constraints. European J. of Industrial Engineering, 4(4), 413. doi:10.1504/ejie.2010.035652Bhattacharyya, S., & Koehler, G. J. (1998). Learning by Objectives for Adaptive Shop-Floor Scheduling. Decision Sciences, 29(2), 347-375. doi:10.1111/j.1540-5915.1998.tb01580.xBitran, G. R., & Tirupati, D. (1988). OR Practice—Development and Implementation of a Scheduling System for a Wafer Fabrication Facility. Operations Research, 36(3), 377-395. doi:10.1287/opre.36.3.377Buxey, G. (1989). Production scheduling: Practice and theory. European Journal of Operational Research, 39(1), 17-31. doi:10.1016/0377-2217(89)90349-4Chen, J.-F. (2004). Unrelated parallel machine scheduling with secondary resource constraints. The International Journal of Advanced Manufacturing Technology, 26(3), 285-292. doi:10.1007/s00170-003-1622-1Collinot, A., Le Pape, C., & Pinoteau, G. (1988). SONIA: A knowledge-based scheduling system. Artificial Intelligence in Engineering, 3(2), 86-94. doi:10.1016/0954-1810(88)90024-6Cowling, P. (2003). A flexible decision support system for steel hot rolling mill scheduling. Computers & Industrial Engineering, 45(2), 307-321. doi:10.1016/s0360-8352(03)00038-xDudek, R. A., Panwalkar, S. S., & Smith, M. L. (1992). The Lessons of Flowshop Scheduling Research. Operations Research, 40(1), 7-13. doi:10.1287/opre.40.1.7Dumond, E. J. (2005). Understanding and using the capabilities of finite scheduling. Industrial Management & Data Systems, 105(4), 506-526. doi:10.1108/02635570510592398Fox, M. S., & Smith, S. F. (1984). ISIS?a knowledge-based system for factory scheduling. Expert Systems, 1(1), 25-49. doi:10.1111/j.1468-0394.1984.tb00424.xFraminan, J. M., & Ruiz, R. (2010). Architecture of manufacturing scheduling systems: Literature review and an integrated proposal. European Journal of Operational Research, 205(2), 237-246. doi:10.1016/j.ejor.2009.09.026Freed, T., Doerr, K. H., & Chang, T. (2007). In-house development of scheduling decision support systems: case study for scheduling semiconductor device test operations. International Journal of Production Research, 45(21), 5075-5093. doi:10.1080/00207540600818351Gao, C and Tang, L. 2008. A decision support system for color-coating line in steel industry. In: Proceedings of the IEEE international conference on automation and logistics, ICAL 2008. 2008. pp.1463–1468.Grant, T. J. (1986). Lessons for O.R. from A.I.: A Scheduling Case Study. Journal of the Operational Research Society, 37(1), 41-57. doi:10.1057/jors.1986.7Graves, S. C. (1981). A Review of Production Scheduling. Operations Research, 29(4), 646-675. doi:10.1287/opre.29.4.646HALSALL, D. N., MUHLEMANN, A. P., & PRICE, D. H. R. (1994). A review of production planning and scheduling in smaller manufacturing companies in the UK. Production Planning & Control, 5(5), 485-493. doi:10.1080/09537289408919520Higgins, P. G. (1996). Interaction in hybrid intelligent scheduling. International Journal of Human Factors in Manufacturing, 6(3), 185-203. doi:10.1002/(sici)1522-7111(199622)6:33.0.co;2-6Kanet, J. J., & Adelsberger, H. H. (1987). Expert systems in production scheduling. European Journal of Operational Research, 29(1), 51-59. doi:10.1016/0377-2217(87)90192-5Kathawala, Y., & Allen, W. R. (1993). Expert Systems and Job Shop Scheduling. International Journal of Operations & Production Management, 13(2), 23-35. doi:10.1108/01443579310025286Kerr, R. M. (1992). Expert systems in production scheduling: Lessons from a failed implementation. Journal of Systems and Software, 19(2), 123-130. doi:10.1016/0164-1212(92)90063-pKnolmayer, G., Mertens, P., & Zeier, A. (2002). Supply Chain Management Based on SAP Systems. doi:10.1007/978-3-540-24816-3Leachman, R. C., Benson, R. F., Liu, C., & Raar, D. J. (1996). IMPReSS: An Automated Production-Planning and Delivery-Quotation System at Harris Corporation—Semiconductor Sector. Interfaces, 26(1), 6-37. doi:10.1287/inte.26.1.6MACCARTHY, B. L., & LIU, J. (1993). Addressing the gap in scheduling research: a review of optimization and heuristic methods in production scheduling. International Journal of Production Research, 31(1), 59-79. doi:10.1080/00207549308956713McKay, K. N., & Black, G. W. (2007). The evolution of a production planning system: A 10-year case study. Computers in Industry, 58(8-9), 756-771. doi:10.1016/j.compind.2007.02.002McKay, K. N., Safayeni, F. R., & Buzacott, J. A. (1988). Job-Shop Scheduling Theory: What Is Relevant? Interfaces, 18(4), 84-90. doi:10.1287/inte.18.4.84McKay, K. N., Morton, T. E., Ramnath, P., & Wang, J. (2000). ?Aversion dynamics? scheduling when the system changes. Journal of Scheduling, 3(2), 71-88. doi:10.1002/(sici)1099-1425(200003/04)3:23.0.co;2-0MCKAY, K., PINEDO, M., & WEBSTER, S. (2009). PRACTICE-FOCUSED RESEARCH ISSUES FOR SCHEDULING SYSTEMS*. Production and Operations Management, 11(2), 249-258. doi:10.1111/j.1937-5956.2002.tb00494.xMissbauer, H., Hauber, W., & Stadler, W. (2009). A scheduling system for the steelmaking-continuous casting process. A case study from the steel-making industry. International Journal of Production Research, 47(15), 4147-4172. doi:10.1080/00207540801950136Numao, M and Morishita, S. 1989. A scheduling environment for steel-making processes. In: Proceedings of the 5th conference on artificial intelligence applications. 1989. pp.279–286.Olhager, J., & Rapp, B. (1995). Operations Research Techniques in Manufacturing Planning and Control Systems. International Transactions in Operational Research, 2(1), 29-43. doi:10.1111/j.1475-3995.1995.tb00003.xPerez-Gonzalez, P., & Framinan, J. M. (2009). Scheduling permutation flowshops with initial availability constraint: Analysis of solutions and constructive heuristics. Computers & Operations Research, 36(10), 2866-2876. doi:10.1016/j.cor.2008.12.018Pinedo, M., & Yen, B. P.-C. (1997). Annals of Operations Research, 70, 359-378. doi:10.1023/a:1018986524234Portougal, V., & Robb, D. J. (2000). Production Scheduling Theory: Just Where Is It Applicable? Interfaces, 30(6), 64-76. doi:10.1287/inte.30.6.64.11623Reisman, A., Kumar, A., & Motwani, J. (1997). Flowshop scheduling/sequencing research: a statistical review of the literature, 1952-1994. IEEE Transactions on Engineering Management, 44(3), 316-329. doi:10.1109/17.618173Steffen, MS. 1986. A survey of artificial intelligence-based scheduling systems. In: Proceedings of the fall industrial engineering conference. 1986.Storer, R. H., Wu, S. D., & Vaccari, R. (1992). New Search Spaces for Sequencing Problems with Application to Job Shop Scheduling. Management Science, 38(10), 1495-1509. doi:10.1287/mnsc.38.10.1495Tang, L., & Wang, G. (2008). Decision support system for the batching problems of steelmaking and continuous-casting production. Omega, 36(6), 976-991. doi:10.1016/j.omega.2007.11.002T’kindt, V., Billaut, J.-C., Bouquard, J.-L., Lenté, C., Martineau, P., Néron, E., … Tacquard, C. (2005). The e-OCEA project: towards an Internet decision system for scheduling problems. Decision Support Systems, 40(2), 329-337. doi:10.1016/j.dss.2004.04.001Wiers, VCS. 1997. Human–computer interaction in production scheduling: Analysis and design of decision support systems for production scheduling tasks. Ph.D. Thesis, Technische Universiteit Eindhoven, NetherlandsWiers, V. C. S. (2002). A case study on the integration of APS and ERP in a steel processing plant. Production Planning & Control, 13(6), 552-560. doi:10.1080/09537280210160321Wiers, V. C. S., & Van Der Schaaf, T. W. (1997). A framework for decision support in production scheduling tasks. Production Planning & Control, 8(6), 533-544. doi:10.1080/095372897234876Zhang, L., Krishnamurthy, A., Malmborg, C. J., & Heragu, S. S. (2009). Variance-based approximations of transaction waiting times in autonomous vehicle storage and retrieval systems. European J. of Industrial Engineering, 3(2), 146. doi:10.1504/ejie.2009.02360

    Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5-year follow-up of a randomised controlled trial

    Get PDF
    In the Fractional Flow Reserve Versus Angiography for Multivessel Evaluation (FAME) study, fractional flow reserve (FFR)-guided percutaneous coronary intervention (PCI) improved outcome compared with angiography-guided PCI for up to 2 years of follow-up. The aim in this study was to investigate whether the favourable clinical outcome with the FFR-guided PCI in the FAME study persisted over a 5-year follow-up

    Case Study: Predictive Fairness to Reduce Misdemeanor Recidivism Through Social Service Interventions

    Full text link
    The criminal justice system is currently ill-equipped to improve outcomes of individuals who cycle in and out of the system with a series of misdemeanor offenses. Often due to constraints of caseload and poor record linkage, prior interactions with an individual may not be considered when an individual comes back into the system, let alone in a proactive manner through the application of diversion programs. The Los Angeles City Attorney's Office recently created a new Recidivism Reduction and Drug Diversion unit (R2D2) tasked with reducing recidivism in this population. Here we describe a collaboration with this new unit as a case study for the incorporation of predictive equity into machine learning based decision making in a resource-constrained setting. The program seeks to improve outcomes by developing individually-tailored social service interventions (i.e., diversions, conditional plea agreements, stayed sentencing, or other favorable case disposition based on appropriate social service linkage rather than traditional sentencing methods) for individuals likely to experience subsequent interactions with the criminal justice system, a time and resource-intensive undertaking that necessitates an ability to focus resources on individuals most likely to be involved in a future case. Seeking to achieve both efficiency (through predictive accuracy) and equity (improving outcomes in traditionally under-served communities and working to mitigate existing disparities in criminal justice outcomes), we discuss the equity outcomes we seek to achieve, describe the corresponding choice of a metric for measuring predictive fairness in this context, and explore a set of options for balancing equity and efficiency when building and selecting machine learning models in an operational public policy setting.Comment: 12 pages, 4 figures, 1 algorithm. The definitive Version of Record will be published in the proceedings of the Conference on Fairness, Accountability, and Transparency (FAT* '20), January 27-30, 2020, Barcelona, Spai

    Evaluating gene by sex and age interactions on cardiovascular risk factors in Brazilian families

    Get PDF
    Background: In family studies, it is important to evaluate the impact of genes and environmental factors on traits of interest. In particular, the relative influences of both genes and the environment may vary in different strata of the population of interest, such as young and old individuals, or males and females. Methods: In this paper, extensions of the variance components model are used to evaluate heterogeneity in the genetic and environmental variance components due to the effects of sex and age (the cutoff between young and old was 43 yrs). The data analyzed were from 81 Brazilian families (1,675 individuals) of the Baependi Family Heart Study. Results: The models allowing for heterogeneity of variance components by sex suggest that genetic and environmental variances are not different in males and females for diastolic blood pressure, LDL-cholesterol, and HDL-cholesterol, independent of the covariates included in the models. However, for systolic blood pressure, fasting glucose and triglycerides, the evidence for heterogeneity was dependent on the covariates in the model. For instance, in the presence of sex and age covariates, heterogeneity in the genetic variance component was suggested for fasting glucose. But, for systolic blood pressure, there was no evidence of heterogeneity in any of the two variance components. Except for the LDL-cholesterol, models allowing for heterogeneity by age provide evidence of heterogeneity in genetic variance for triglycerides and systolic and diastolic blood pressure. There was evidence of heterogeneity in environmental variance in fasting glucose and HDL-cholesterol. Conclusions: Our results suggest that heterogeneity in trait variances should not be ignored in the design and analyses of gene-finding studies involving these traits, as it may generate additional information about gene effects, and allow the investigation of more sophisticated models such as the model including sex-specific oligogenic variance components

    UK Greenhouse Gas Inventory 1990 to 2021: annual report for submission under the Framework Convention on Climate Change

    Get PDF
    This is the United Kingdom’s National Inventory Report (NIR) submitted in 2023 to the United Nations Framework Convention on Climate Change (UNFCCC). It contains national greenhouse gas emission estimates for the period 1990-2021, and descriptions of the methods used to produce the estimates. The greenhouse gas inventory (GHGI) is based on the same datasets used by the UK in the National Atmospheric Emissions Inventory (NAEI) for reporting atmospheric emissions under other international agreements. The GHGI is therefore consistent with these other air emissions inventories where they overlap. The greenhouse gas inventory is compiled on behalf of the UK Department for Energy Security and Net Zero (DESNZ) for the Science and Innovation for Climate and Energy (SICE) Directorate, by Ricardo Energy & Environment. We acknowledge the positive support and advice from DESNZ throughout the work, and we are grateful for the help of all those who have contributed to this NIR. A list of the contributors can be found in Chapter 18. The GHGI is compiled according to the Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines (IPCC, 2006). Each year the inventory is updated to include the latest data available. Improvements to the methodology are backdated as necessary to ensure a consistent time series. Methodological changes are made to take account of new data sources, or new guidance from IPCC, and new research, sponsored by DESNZ or otherwise
    corecore