192 research outputs found

    Nonperturbative contributions to the QCD pressure

    Full text link
    We summarize the most important arguments why a perturbative description of finite-temperature QCD is unlikely to be possible and review various well-established approaches to deal with this problem. Then, using a recently proposed method, we investigate nonperturbative contributions to the QCD pressure and other observables (like energy, anomaly and bulk viscosity) obtained by imposing a functional cutoff at the Gribov horizon. Finally, we discuss how such contributions fit into the picture of consecutive effective theories, as proposed by Braaten and Nieto, and give an outline of the next steps necessary to improve this type of calculation.Comment: 15 pages, 13 figures, uses xcolor.sty; in v2 quality of some figures has been improved, discussion of other approaches has been extende

    On the Possibility of Measuring the Gravitomagnetic Clock Effect in an Earth Space-Based Experiment

    Full text link
    In this paper the effect of the post-Newtonian gravitomagnetic force on the mean longitudes ll of a pair of counter-rotating Earth artificial satellites following almost identical circular equatorial orbits is investigated. The possibility of measuring it is examined. The observable is the difference of the times required to ll in passing from 0 to 2π\pi for both senses of motion. Such gravitomagnetic time shift, which is independent of the orbital parameters of the satellites, amounts to 5×107\times 10^{-7} s for Earth; it is cumulative and should be measured after a sufficiently high number of revolutions. The major limiting factors are the unavoidable imperfect cancellation of the Keplerian periods, which yields a constraint of 102^{-2} cm in knowing the difference between the semimajor axes aa of the satellites, and the difference II of the inclinations ii of the orbital planes which, for i0.01i\sim 0.01^\circ, should be less than 0.0060.006^\circ. A pair of spacecrafts endowed with a sophisticated intersatellite tracking apparatus and drag-free control down to 109^{-9} cm s2^{-2} Hz1/2^{-{1/2}} level might allow to meet the stringent requirements posed by such a mission.Comment: LaTex2e, 22 pages, no tables, 1 figure, 38 references. Final version accepted for publication in Classical and Quantum Gravit

    Spinning test particles and clock effect in Schwarzschild spacetime

    Full text link
    We study the behaviour of spinning test particles in the Schwarzschild spacetime. Using Mathisson-Papapetrou equations of motion we confine our attention to spatially circular orbits and search for observable effects which could eventually discriminate among the standard supplementary conditions namely the Corinaldesi-Papapetrou, Pirani and Tulczyjew. We find that if the world line chosen for the multipole reduction and whose unit tangent we denote as UU is a circular orbit then also the generalized momentum PP of the spinning test particle is tangent to a circular orbit even though PP and UU are not parallel four-vectors. These orbits are shown to exist because the spin induced tidal forces provide the required acceleration no matter what supplementary condition we select. Of course, in the limit of a small spin the particle's orbit is close of being a circular geodesic and the (small) deviation of the angular velocities from the geodesic values can be of an arbitrary sign, corresponding to the possible spin-up and spin-down alignment to the z-axis. When two spinning particles orbit around a gravitating source in opposite directions, they make one loop with respect to a given static observer with different arrival times. This difference is termed clock effect. We find that a nonzero gravitomagnetic clock effect appears for oppositely orbiting both spin-up or spin-down particles even in the Schwarzschild spacetime. This allows us to establish a formal analogy with the case of (spin-less) geodesics on the equatorial plane of the Kerr spacetime. This result can be verified experimentally.Comment: IOP macros, eps figures n. 2, to appear on Classical and Quantum gravity, 200

    Trace Anomaly and Quasi-Particles in Finite Temperature SU(N) Gauge Theory

    Full text link
    We consider deconfined matter in SU(N) gauge theory as an ideal gas of transversely polarized quasi-particle modes having a temperature-dependent mass m(T). Just above the transition temperature, the mass is assumed to be determined by the critical behavior of the energy density and the screening length in the medium. At high temperature, it becomes proportional to T as the only remaining scale. The resulting (trace anomaly based) interaction measure Delta=(e - 3P)/T^4 and energy density are found to agree well with finite temperature SU(3) lattice calculations.Comment: 13 pages, 13 figures; references added for version

    Stability of Terrestrial Planets in the Habitable Zone of Gl 777 A, HD 72659, Gl 614, 47 Uma and HD 4208

    Full text link
    We have undertaken a thorough dynamical investigation of five extrasolar planetary systems using extensive numerical experiments. The systems Gl 777 A, HD 72659, Gl 614, 47 Uma and HD 4208 were examined concerning the question of whether they could host terrestrial like planets in their habitable zones (=HZ). First we investigated the mean motion resonances between fictitious terrestrial planets and the existing gas giants in these five extrasolar systems. Then a fine grid of initial conditions for a potential terrestrial planet within the HZ was chosen for each system, from which the stability of orbits was then assessed by direct integrations over a time interval of 1 million years. The computations were carried out using a Lie-series integration method with an adaptive step size control. This integration method achieves machine precision accuracy in a highly efficient and robust way, requiring no special adjustments when the orbits have large eccentricities. The stability of orbits was examined with a determination of the Renyi entropy, estimated from recurrence plots, and with a more straight forward method based on the maximum eccentricity achieved by the planet over the 1 million year integration. Additionally, the eccentricity is an indication of the habitability of a terrestrial planet in the HZ; any value of e>0.2 produces a significant temperature difference on a planet's surface between apoapse and periapse. The results for possible stable orbits for terrestrial planets in habitable zones for the five systems are summarized as follows: for Gl 777 A nearly the entire HZ is stable, for 47 Uma, HD 72659 and HD 4208 terrestrial planets can survive for a sufficiently long time, while for Gl 614 our results exclude terrestrial planets moving in stable orbits within the HZ.Comment: 14 pages, 18 figures submitted to A&

    Phenomenology of the Lense-Thirring effect in the Solar System

    Full text link
    Recent years have seen increasing efforts to directly measure some aspects of the general relativistic gravitomagnetic interaction in several astronomical scenarios in the solar system. After briefly overviewing the concept of gravitomagnetism from a theoretical point of view, we review the performed or proposed attempts to detect the Lense-Thirring effect affecting the orbital motions of natural and artificial bodies in the gravitational fields of the Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of the impact of several sources of systematic uncertainties of dynamical origin to realistically elucidate the present and future perspectives in directly measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in Astrophysics and Space Science (ApSS). Some uncited references in the text now correctly quoted. One reference added. A footnote adde
    corecore