3,009 research outputs found

    Localized Control of Curie Temperature in Perovskite Oxide Film by Capping-layer- induced Octahedral Distortion

    Get PDF
    With reduced dimensionality, it is often easier to modify the properties of ultra-thin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultra-thin perovskite SrRuO3 films by the deposition of a SrTiO3 capping layer, which can be lithographically patterned to achieve local control. Using a scanning Sagnac magnetic microscope, we show increase in the Curie temperature of SrRuO3 due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. This capping-layer-based technique may open new possibilities for developing functional oxide materials.Comment: Main-text 5 pages, SI 6 pages. To appear in Physical Review Letter

    Hard X-ray timing and spectral characteristics of the energetic pulsar PSR J0205+6449 in supernova remnant 3C58

    Get PDF
    PSR J0205+6449 is a young rotation-powered pulsar in SNR 3C 58. It is one of only three young (<10,000 year old) pulsars which are so far detected in the radio and the classical X-ray bands, as well as at hard X-rays above 20 keV and at high-energy (>100 MeV) Îł\gamma-rays. The other two young pulsars are the Crab and PSR B1509-58. Our aim is to derive the timing and spectral characteristics of PSR J0205+6449 over the broad X-ray band from ~0.5 to ~270 keV. We used all publicly available RXTE observations of PSR J0205+6449 to first generate accurate ephemerides over the period September 30, 2000 - March 18, 2006. Next, phase-folding procedures yielded pulse profiles using data from RXTE PCA and HEXTE, and XMM-Newton EPIC PN. While our timing solutions are consistent with earlier results, our work shows sharper structures in the PCA X-ray profile. The X-ray pulse profile consists of two sharp pulses, separated in phase by 0.488(2), which can be described with 2 asymmetric Lorentzians, each with the rising wing steeper than the trailing wing, and full-width-half-maximum 1.41(5) ms and 2.35(22) ms, respectively. We find an indication for a flux increase by a factor ~2, about 3.5 sigma above the time-averaged value, for the second, weaker pulse during a two-week interval, while its pulse shape did not change. The spectrum of the pulsed X-ray emission is of non-thermal origin, exhibiting a power-law shape with photon index Gamma = 1.03(2) over the energy band ~0.5 to ~270 keV. In the energy band covered with the PCA (~3-30 keV) the spectra of the two pulses have the same photon index, namely, 1.04(3) and 1.10(8), respectively.Comment: 10 pages; 7 figures (2 in color), resubmitted to A&A, including referee comment

    INTEGRAL timing and localization performance

    Full text link
    In this letter we report on the accuracy of the attitude, misalignment, orbit and time correlation which are used to perform scientific analyses of the INTEGRAL data. The boresight attitude during science pointings has an accuracy of 3 arcsec. At the center of the field, the misalignments have been calibrated leading to a location accuracy of 4 to 40 arcsec for the different instruments. The spacecraft position is known within 10 meters. The relative timing between instruments could be reconstructed within 10 microsec and the absolute timing within 40 microsec.Comment: 5 pages, 2 figures, accepted for publication in A+A letters, INTEGRAL special issu

    The Short Rotation Period of Nereid

    Full text link
    We determine the period, p = 11.52 \pm 0.14 h, and a light curve peak-to-peak amplitude, a = 0.029 \pm 0.003 magnitudes, of the Neptunian irregular satellite Nereid. If the light curve variation is due to albedo variations across the surface, rather than solely to the shape of Nereid variations, the rotation period would be a factor of two shorter. In either case, such a rotation period and light curve amplitude, together with Nereid's orbital period, p=360.14 days, imply that Nereid is almost certainly in a regular rotation state, rather than the chaotic rotation state suggested by Schaefer and Schaefer (1988,2000) and Dobrovolskis (1995). Assuming that Nereid is perfectly spherical, the albedo variation is 3% across the observed surface. Assuming a uniform geometric albedo, the observed cross sectional area varies by 3%. We caution that the lightcurve found in this paper only sets limits on the combination of albedo and physical irregularity and that we cannot determine the orientation of Nereid's spin axis from our data.Comment: Accepted by ApJ Letters, 11 pages (incl. 1 figure

    A Project Based Approach to Statistics and Data Science

    Full text link
    In an increasingly data-driven world, facility with statistics is more important than ever for our students. At institutions without a statistician, it often falls to the mathematics faculty to teach statistics courses. This paper presents a model that a mathematician asked to teach statistics can follow. This model entails connecting with faculty from numerous departments on campus to develop a list of topics, building a repository of real-world datasets from these faculty, and creating projects where students interface with these datasets to write lab reports aimed at consumers of statistics in other disciplines. The end result is students who are well prepared for interdisciplinary research, who are accustomed to coping with the idiosyncrasies of real data, and who have sharpened their technical writing and speaking skills

    INTEGRAL observation of 3EG J1736-2908

    Get PDF
    The possible identification by INTEGRAL of the EGRET source 3EG J1736-2908 with the active galactic nucleus GRS 1734-292 is discussed. The latter was discovered in 1990 and later identified with a Seyfert 1 galaxy. At the time of the compilation of the 3rd EGRET Catalog, it was not considered as a possible counterpart of the source 3EG J1736-2908, which remained unidentified. A detailed multiwavelength study of the EGRET error circle is presented, by including archival radio, soft- and hard-X observations, suggesting that GRS 1734-292 could be a likely counterpart of 3EG J1736-2908, even though this poses very interesting questions about the production mechanisms of gamma-rays with energies greater than 100 MeV.Comment: 6 pages, 3 figures. Accepted for publication on A&A Main Journa

    GRB990510: on the possibility of a beamed X-ray afterglow

    Get PDF
    We discuss the prompt emission of the gamma-ray burst (GRB) 990510 and its subsequent X-ray afterglow from 8.0 to 44.3 hrs after the prompt emission, using observations with the Gamma-ray Burst Monitor and Narrow Field Instruments on BeppoSAX. In the 40-700 keV band, GRB990510 had a fluence of \~1.9x10^{-5}erg cm^{-2}, whereas it reached a peak flux of ~2.4x10^{-6}erg cm^{-2} s^{-1}. The X-ray afterglow decay light curve can be satisfactorily described by a single power law with index of -1.42+/-0.07. Both the X-ray and optical behaviour of the afterglow can be explained by gamma-ray burst debris expanding as a jet; we find that the cooling frequency is (fixed) between the optical and X-ray wavelength bands.Comment: 16 pages, 4 figures, accepted for publication in the Astrophysical Journa

    The host galaxy of the z=2.4 radio-loud AGN MRC 0406-244 as seen by HST

    Full text link
    We present multicolour Hubble Space Telescope images of the powerful z=2.4 radio galaxy MRC 0406-244 and model its complex morphology with several components including a host galaxy, a point source, and extended nebular and continuum emission. We suggest that the main progenitor of this radio galaxy was a normal, albeit massive (M ~10^{11} solar masses), star-forming galaxy. The optical stellar disc of the host galaxy is smooth and well described by a S\'ersic profile, which argues against a recent major merger, however there is also a point-source component which may be the remnant of a minor merger. The half-light radius of the optical disc is constrained to lie in the range 3.5 to 8.2kpc, which is of similar size to coeval star forming galaxies. Biconical shells of nebular emission and UV-bright continuum extend out from the host galaxy along the radio jet axis, which is also the minor axis of the host galaxy. The origin of the continuum emission is uncertain, but it is most likely to be young stars or dust-scattered light from the AGN, and it is possible that stars are forming from this material at a rate of 200^{+1420}_{-110} solar masses per year.Comment: Accepted for publication in MNRA
    • …
    corecore