168 research outputs found

    The magnetic phase diagram of underdoped YBa2Cu3Oy inferred from torque magnetization and thermal conductivity

    Full text link
    Strong evidence for charge-density correlation in the underdoped phase of the cuprate YBa2Cu3Oy was obtained by nuclear magnetic resonance (NMR) and resonant x-ray scatter- ing. The fluctuations were found to be enhanced in strong magnetic fields. Recently, 3D (three dimensional) charge-density wave (CDW) formation with long-range order (LRO) was observed by x-ray diffraction in H >15 T. To elucidate how the CDW transition impacts the pair condensate, we have used torque magnetization to 45 T and thermal conductivity κxx\kappa_{xx} to construct the magnetic phase diagram in untwinned crystals with hole density p = 0.11. We show that the 3D CDW transitions appear as sharp features in the susceptibility and κxx\kappa_{xx} at the fields HK and Hp, which define phase boundaries in agreement with spectroscopic techniques. From measurements of the melting field Hm(T) of the vortex solid, we obtain evidence for two vortex solid states below 8 K. At 0.5 K, the pair condensate appears to adjust to the 3D CDW by a sharp transition at 24 T between two vortex solids with very different shear moduli. At even higher H (42 T) the second vortex solid melts to a vortex liquid which survives to fields well above 45 T. de Haas-van Alphen oscillations appear at fields 24-28 T, below the lower bound for the upper critical field Hc2.Comment: 7 pages, 8 figures; New version of previous posting, reporting torque measurements to 45 Tesla and final magnetic phase diagra

    Liver Transplantation for Advanced Liver Disease with Alpha-1antitrypsin Deficiency

    Get PDF
    ALPHA-1-antitrypsin deficiency associated with chronic obstructive airway disease was recognized in 1963 by Laurell and Ericksson.1 In 1969, Sharp2 described the first cases of alpha-1-antitrypsin-deficiency disease in children with cirrhosis. Since then, this inborn error has been recognized as one of the more common factors in cirrhosis of infancy and childhood,3 including “neonatal hepatitis.”4 Alpha-1-antitrypsin is a glycoprotein that accounts for a major portion of the alpha-1 globulin fraction of the serum.5 It is responsible for approximately 90 per cent of the antitrypsin activity6 of the serum, and it also inhibits several other plasma enzymes, including plasmin,7 elastase,8 collagenase,9 and. © 1980, Massachusetts Medical Society. All rights reserved

    The planar thermal Hall conductivity in the Kitaev magnet {\alpha}-RuCl3

    Full text link
    We report detailed measurements of the Onsager-like planar thermal Hall conductivity κxy\kappa_{xy} in α\alpha-RuCl3_3, a spin-liquid candidate of topical interest. With the thermal current JQ{\bf J}_{\rm Q} and magnetic field Ba\bf B\parallel a (zigzag axis), the observed κxy/T\kappa_{xy}/T varies strongly with temperature TT (1-10 K). The results are well-described by bosonic edge excitations which evolve to topological magnons at large BB. Fits to κxy/T\kappa_{xy}/T yield a Chern number 1\sim 1 and a band energy ω1\omega_1\sim1 meV, in agreement with sharp modes seen in electron spin-resonance experiments. The bosonic character is incompatible with half-quantization of κxy/T\kappa_{xy}/T.Comment: 7 pages, 3 figure

    Quantum Tricritical Points in NbFe2_2

    Get PDF
    Quantum critical points (QCPs) emerge when a 2nd order phase transition is suppressed to zero temperature. In metals the quantum fluctuations at such a QCP can give rise to new phases including unconventional superconductivity. Whereas antiferromagnetic QCPs have been studied in considerable detail ferromagnetic (FM) QCPs are much harder to access. In almost all metals FM QCPs are avoided through either a change to 1st order transitions or through an intervening spin-density-wave (SDW) phase. Here, we study the prototype of the second case, NbFe2_2. We demonstrate that the phase diagram can be modelled using a two-order-parameter theory in which the putative FM QCP is buried within a SDW phase. We establish the presence of quantum tricritical points (QTCPs) at which both the uniform and finite qq susceptibility diverge. The universal nature of our model suggests that such QTCPs arise naturally from the interplay between SDW and FM order and exist generally near a buried FM QCP of this type. Our results promote NbFe2_2 as the first example of a QTCP, which has been proposed as a key concept in a range of narrow-band metals, including the prominent heavy-fermion compound YbRh2_2Si2_2.Comment: 21 pages including S

    A novel OSA-related model of intermittent hypoxia in endothelial cells under flow reveals pronounced inflammatory pathway activation

    Get PDF
    Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder characterized by recurrent episodes of upper airway obstruction and subsequent hypoxia. In patients with OSA, severity and number of these hypoxic events positively correlate with the extent of associated cardiovascular pathology. The molecular mechanisms underlying intermittent hypoxia (IH)-driven cardiovascular disease in OSA, however, remain poorly understood—partly due to the lack of adequate experimental models. Here, we present a novel experimental approach that utilizes primary human endothelial cells cultivated under shear stress. Oxygen partial pressure dynamics were adopted in our in vitro model according to the desaturation-reoxygenation patterns identified in polysomnographic data of severe OSA patients (n = 10, with 892 severe desaturations, SpO2<80%). Using western blot analysis, we detected a robust activation of the two major inflammatory pathways ERK and NF-κB in endothelial cells, whereas no HIF1α and HIF2α protein stabilization was observed. In line with these findings, mRNA and protein expression of the pro-inflammatory adhesion and signaling molecule ICAM-1 and the chemokine CCL2 were significantly increased. Hence, we established a novel in vitro model for deciphering OSA-elicited effects on the vascular endothelium. First data obtained in this model point to the endothelial activation of pro-inflammatory rather than hypoxia-associated pathways in OSA. Future studies in this model might contribute to the development of targeted strategies against OSA-induced, secondary cardiovascular disease

    Kazakhstan Gulag heritage: dark tourism and selective interpretation

    Get PDF
    Kazakhstan holds some of the most significant Gulag heritage sites; however, tourism research remains limited. This article introduces analysis of contrasting sites and considers how some have been developed and others ignored. Selectivity in interpretation is linked to societal amnesia and the collective trauma experienced by the population of Kazakhstan. The article reaffirms the politicization of heritage in this emergent nation

    Symmetry and topology in antiferromagnetic spintronics

    Full text link
    Antiferromagnetic spintronics focuses on investigating and using antiferromagnets as active elements in spintronics structures. Last decade advances in relativistic spintronics led to the discovery of the staggered, current-induced field in antiferromagnets. The corresponding N\'{e}el spin-orbit torque allowed for efficient electrical switching of antiferromagnetic moments and, in combination with electrical readout, for the demonstration of experimental antiferromagnetic memory devices. In parallel, the anomalous Hall effect was predicted and subsequently observed in antiferromagnets. A new field of spintronics based on antiferromagnets has emerged. We will focus here on the introduction into the most significant discoveries which shaped the field together with a more recent spin-off focusing on combining antiferromagnetic spintronics with topological effects, such as antiferromagnetic topological semimetals and insulators, and the interplay of antiferromagnetism, topology, and superconductivity in heterostructures.Comment: Book chapte

    Dynamic Diagnosis of Familial Prion Diseases Supports the β2-α2 Loop as a Universal Interference Target

    Get PDF
    [Background] Mutations in the cellular prion protein associated to familial prion disorders severely increase the likelihood of its misfolding into pathogenic conformers. Despite their postulation as incompatible elements with the native fold, these mutations rarely modify the native state structure. However they variably have impact on the thermodynamic stability and metabolism of PrPC and on the properties of PrPSc aggregates. To investigate whether the pathogenic mutations affect the dynamic properties of the HuPrP(125-229) α-fold and find possible common patterns of effects that could help in prophylaxis we performed a dynamic diagnosis of ten point substitutions.[Methodology/Principal Findings] Using all-atom molecular dynamics simulations and novel analytical tools we have explored the effect of D178N, V180I, T183A, T188K, E196K, F198S, E200K, R208H, V210I and E211Q mutations on the dynamics of HuPrP(125-228) α-fold. We have found that while preserving the native state, all mutations produce dynamic changes which perturb the coordination of the α2-α3 hairpin to the rest of the molecule and cause the reorganization of the patches for intermolecular recognition, as the disappearance of those for conversion inhibitors and the emergence of an interaction site at the β2-α2 loop region.[Conclusions/Significance] Our results suggest that pathogenic mutations share a common pattern of dynamical alterations that converge to the conversion of the β2-α2 loop into an interacting region that can be used as target for interference treatments in genetic diseases.This work was supported in parts by grants BFU2009-07971 from the MICINN (MG), FundaciÃ3n Cien (MG); Fondazione Cariplo (GC) and AIRC (GC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding received for this study.Peer reviewe

    Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP

    Full text link
    Weyl semimetals are materials where electrons behave effectively as a kind of massless relativistic particles known asWeyl fermions. These particles occur in two flavours, or chiralities, and are subject to quantum anomalies, the breaking of a conservation law by quantum fluctuations. For instance, the number of Weyl fermions of each chirality is not independently conserved in parallel electric and magnetic field, a phenomenon known as the chiral anomaly. In addition, an underlying curved spacetime provides a distinct contribution to a chiral imbalance, an effect known as the mixed axial-gravitational anomaly, which remains experimentally elusive. However, the presence of a mixed gauge-gravitational anomaly has recently been tied to thermoelectrical transport in a magnetic field, even in flat spacetime, opening the door to experimentally probe such type of anomalies in Weyl semimetals. Using a temperature gradient, we experimentally observe a positive longitudinal magnetothermoelectric conductance (PMTC) in the Weyl semimetal NbP for collinear temperature gradients and magnetic fields (DT || B) that vanishes in the ultra quantum limit. This observation is consistent with the presence of a mixed axial-gravitational anomaly. Our work provides clear experimental evidence for the existence of a mixed axial-gravitational anomaly of Weyl fermions, an outstanding theoretical concept that has so far eluded experimental detection

    Quantum tricritical points in NbFe2

    Get PDF
    Quantum critical points (QCPs) emerge when a 2nd order phase transition is suppressed to zero temperature. In metals the quantum fluctuations at such a QCP can give rise to new phases including unconventional superconductivity. Whereas antiferromagnetic QCPs have been studied in considerable detail ferromagnetic (FM) QCPs are much harder to access. In almost all metals FM QCPs are avoided through either a change to 1st order transitions or through an intervening spin-density-wave (SDW) phase. Here, we study the prototype of the second case, NbFe2_2. We demonstrate that the phase diagram can be modelled using a two-order-parameter theory in which the putative FM QCP is buried within a SDW phase. We establish the presence of quantum tricritical points (QTCPs) at which both the uniform and finite qq susceptibility diverge. The universal nature of our model suggests that such QTCPs arise naturally from the interplay between SDW and FM order and exist generally near a buried FM QCP of this type. Our results promote NbFe2_2 as the first example of a QTCP, which has been proposed as a key concept in a range of narrow-band metals, including the prominent heavy-fermion compound YbRh2_2Si2_2
    corecore