701 research outputs found

    Conditions for entanglement in multipartite systems

    Full text link
    We introduce two entanglement conditions that take the form of inequalities involving expectation values of operators. These conditions are sufficient conditions for entanglement, that is if they are satisfied the state is entangled, but if they are not, one can say nothing about the entanglement of the state. These conditions are quite flexible, because the operators in them are not specified, and they are particularly useful in detecting multipartite entanglement. We explore the range of utility of these conditions by considering a number of examples of entangled states, and seeing under what conditions entanglement in them can be detected by the inequalities presented here.Comment: accepted for publication in Physical Review

    Universal state inversion and concurrence in arbitrary dimensions

    Get PDF
    Wootters [Phys. Rev. Lett. 80, 2245 (1998)] has given an explicit formula for the entanglement of formation of two qubits in terms of what he calls the concurrence of the joint density operator. Wootters's concurrence is defined with the help of the superoperator that flips the spin of a qubit. We generalize the spin-flip superoperator to a "universal inverter," which acts on quantum systems of arbitrary dimension, and we introduce the corresponding concurrence for joint pure states of (D1 X D2) bipartite quantum systems. The universal inverter, which is a positive, but not completely positive superoperator, is closely related to the completely positive universal-NOT superoperator, the quantum analogue of a classical NOT gate. We present a physical realization of the universal-NOT superoperator.Comment: Revtex, 25 page

    Does the Third Law of Thermodynamics hold in the Quantum Regime?

    Get PDF
    The first in a long series of papers by John T. Lewis, G. W. Ford and the present author, considered the problem of the most general coupling of a quantum particle to a linear passive heat bath, in the course of which they derived an exact formula for the free energy of an oscillator coupled to a heat bath in thermal equilibrium at temperature T. This formula, and its later extension to three dimensions to incorporate a magnetic field, has proved to be invaluable in analyzing problems in quantum thermodynamics. Here, we address the question raised in our title viz. Nernst's third law of thermodynamics

    Implementation of quantum maps by programmable quantum processors

    Full text link
    A quantum processor is a device with a data register and a program register. The input to the program register determines the operation, which is a completely positive linear map, that will be performed on the state in the data register. We develop a mathematical description for these devices, and apply it to several different examples of processors. The problem of finding a processor that will be able to implement a given set of mappings is also examined, and it is shown that while it is possible to design a finite processor to realize the phase-damping channel, it is not possible to do so for the amplitude-damping channel.Comment: 10 revtex pages, no figure

    Quantum models related to fouled Hamiltonians of the harmonic oscillator

    Get PDF
    We study a pair of canonoid (fouled) Hamiltonians of the harmonic oscillator which provide, at the classical level, the same equation of motion as the conventional Hamiltonian. These Hamiltonians, say K1K_{1} and K2K_{2}, result to be explicitly time-dependent and can be expressed as a formal rotation of two cubic polynomial functions, H1H_{1} and H2H_{2}, of the canonical variables (q,p). We investigate the role of these fouled Hamiltonians at the quantum level. Adopting a canonical quantization procedure, we construct some quantum models and analyze the related eigenvalue equations. One of these models is described by a Hamiltonian admitting infinite self-adjoint extensions, each of them has a discrete spectrum on the real line. A self-adjoint extension is fixed by choosing the spectral parameter ϵ\epsilon of the associated eigenvalue equation equal to zero. The spectral problem is discussed in the context of three different representations. For ϵ=0\epsilon =0, the eigenvalue equation is exactly solved in all these representations, in which square-integrable solutions are explicity found. A set of constants of motion corresponding to these quantum models is also obtained. Furthermore, the algebraic structure underlying the quantum models is explored. This turns out to be a nonlinear (quadratic) algebra, which could be applied for the determination of approximate solutions to the eigenvalue equations.Comment: 24 pages, no figures, accepted for publication on JM

    Multi-output programmable quantum processor

    Full text link
    By combining telecloning and programmable quantum gate array presented by Nielsen and Chuang [Phys.Rev.Lett. 79 :321(1997)], we propose a programmable quantum processor which can be programmed to implement restricted set of operations with several identical data outputs. The outputs are approximately-transformed versions of input data. The processor successes with certain probability.Comment: 5 pages and 2 PDF figure

    Measurement models for time-resolved spectroscopy: a comment

    Full text link
    We present an exactly solvable model for photon emission, which allows us to examine the evolution of the photon wavefunction in space and time. We apply this model to coherent phenomena in three-level systems with a special emphasis on the photon detection process.Comment: 14 pages RevTex, 4 figure

    Decoherence in a double-slit quantum eraser

    Full text link
    We study and experimentally implement a double-slit quantum eraser in the presence of a controlled decoherence mechanism. A two-photon state, produced in a spontaneous parametric down conversion process, is prepared in a maximally entangled polarization state. A birefringent double-slit is illuminated by one of the down-converted photons, and it acts as a single-photon two-qubits controlled not gate that couples the polarization with the transversal momentum of these photons. The other photon, that acts as a which-path marker, is sent through a Mach-Zehnder-like interferometer. When the interferometer is partially unbalanced, it behaves as a controlled source of decoherence for polarization states of down-converted photons. We show the transition from wave-like to particle-like behavior of the signal photons crossing the double-slit as a function of the decoherence parameter, which depends on the length path difference at the interferometer.Comment: Accepted in Physical Review

    Optimal unambiguous discrimination of two subspaces as a case in mixed state discrimination

    Full text link
    We show how to optimally unambiguously discriminate between two subspaces of a Hilbert space. In particular we suppose that we are given a quantum system in either the state \psi_{1}, where \psi_{1} can be any state in the subspace S_{1}, or \psi_{2}, where \psi_{2} can be any state in the subspace S_{2}, and our task is to determine in which of the subspaces the state of our quantum system lies. We do not want to make a mistake, which means that our procedure will sometimes fail if the subspaces are not orthogonal. This is a special case of the unambiguous discrimination of mixed states. We present the POVM that solves this problem and several applications of this procedure, including the discrimination of multipartite states without classical communication.Comment: 8 pages, replaced with published versio

    Exponential quantum enhancement for distributed addition with local nonlinearity

    Full text link
    We consider classical and entanglement-assisted versions of a distributed computation scheme that computes nonlinear Boolean functions of a set of input bits supplied by separated parties. Communication between the parties is restricted to take place through a specific apparatus which enforces the constraints that all nonlinear, nonlocal classical logic is performed by a single receiver, and that all communication occurs through a limited number of one-bit channels. In the entanglement-assisted version, the number of channels required to compute a Boolean function of fixed nonlinearity can become exponentially smaller than in the classical version. We demonstrate this exponential enhancement for the problem of distributed integer addition.Comment: To appear in Quantum Information Processin
    • …
    corecore