36 research outputs found

    A possible solution of the grain boundary problem for applications of high-Tc superconductors

    Full text link
    It is shown that the critical current density of high-Tc wires can be greatly enhanced by using a threefold approach, which consists of grain alignment, doping, and optimization of the grain architecture. According to model calculations, current densities of 4x10^6 A/cm2 can be achieved for an average grain alignment of 10 degree at 77K. Based on this approach, a road to competitive high-Tc cables is proposed.Comment: 3 pages, 5 figure

    From uncertainty to reward: BOLD characteristics differentiate signaling pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reward value and uncertainty are represented by dopamine neurons in monkeys by distinct phasic and tonic firing rates. Knowledge about the underlying differential dopaminergic pathways is crucial for a better understanding of dopamine-related processes. Using functional magnetic resonance blood-oxygen level dependent (BOLD) imaging we analyzed brain activation in 15 healthy, male subjects performing a gambling task, upon expectation of potential monetary rewards at different reward values and levels of uncertainty.</p> <p>Results</p> <p>Consistent with previous studies, ventral striatal activation was related to both reward magnitudes and values. Activation in medial and lateral orbitofrontal brain areas was best predicted by reward uncertainty. Moreover, late BOLD responses relative to trial onset were due to expectation of different reward values and likely to represent phasic dopaminergic signaling. Early BOLD responses were due to different levels of reward uncertainty and likely to represent tonic dopaminergic signals.</p> <p>Conclusions</p> <p>We conclude that differential dopaminergic signaling as revealed in animal studies is not only represented locally by involvement of distinct brain regions but also by distinct BOLD signal characteristics.</p

    Advanced Uncertainty Modeling and Robustness Analysis for the Basic Flight Control System of a Modern Jet Trainer

    No full text
    [Abstract] Due to the continuously increasing design requirements on modern aircraft the robustness properties of their flight control systems against multiple model uncertainty becomes a more and more important issue for flight control system certification and flight clearance, particulary in the case of an unstabel aerodynamic basic design. Most classical approches (like stability margins in the Nichols Chart) only provide incomplete information about the qualitative and quantitative degree of robustness. Therefore, an innovative approach for robustness analysis of the primary control laws of a modern jet trainer will be presented here which uses the structured singular value (SSV) and a physically motivated parametric uncertainty model. The methodology is applied to both the longitudinal and lateral basic controller and shows a direct and exact way from the definition of parametric uncertainties to an uncertain system model suitable for -analysis. Particularly, the introduction of a trim point uncertainty emphasizes the davanced character of this analysis method by incorporating the dependence of the control loop parameters (plant and controller gains) on the current trim point into the uncertainty model. Consequently the analysis of the controller can be accomplished for entire regions of the flight envelope in a single robustness test. Therefore, the proposed approach demonstrates the possibility of substituting the conventional proceedures for proving controller robustness by a more efficient methodology

    Continous theta-burst stimulation over the dorsal premotor cortex interferes with associative learning during object lifting

    No full text
    When lifting objects of different mass, humans scale grip force according to the expected mass. In this context, humans are able to associate a sensory cue, such as a colour, to a particular mass of an object and link this association to the grip forces necessary for lifting. Here, we study the role of the dorsal premotor cortex (PMd) in setting-up an association between a colour cue and a particular mass to be lifted. Healthy right-handed subjects used a precision grip between the index finger and thumb to lift two different masses. Colour cues provided information about which of the two masses subjects would have to lift. Subjects first performed a series of lifts with the right hand to establish a stable association between a colour cue and a mass, followed by 20sec of continuous high frequency repetitive trancranial magnetic stimulation using a recently developed protocol (continuous theta-burst stimulation, cTBS) over (i) the left primary motor cortex, (ii) the left PMd and (iii) the left occipital cortex to be commenced by another series of lifts with either the right or left hand. cTBS over the PMd, but not over the primary motor cortex or O1, disrupted the predictive scaling of isometric finger forces based on colour cues, irrespective of whether the right or left hand performed the lifts after the stimulation. Our data highlight the role of the PMd to generalize and maintain associative memory processes relevant for predictive control of grip forces during object manipulation

    Epitaxial integration of the highly spin-polarized ferromagnetic semiconductor EuO with silicon and GaN

    No full text
    Doped EuO is an attractive material for the fabrication of proof-of-concept spintronic devices. Yet for decades its use has been hindered by its instability in air and the difficulty of preparing and patterning high-quality thin films. Here, we establish EuO as the pre-eminent material for the direct integration of a carrier-concentration-matched half-metal with the long-spin-lifetime semiconductors silicon and GaN, using methods that transcend these difficulties. Andreev reflection measurements reveal that the spin polarization in doped epitaxial EuO films exceeds 90%, demonstrating that EuO is a half-metal even when highly doped. Furthermore, EuO is epitaxially integrated with silicon and GaN. These results demonstrate the high potential of EuO for spintronic devices
    corecore