13,690 research outputs found
Sparse bayesian polynomial chaos approximations of elasto-plastic material models
In this paper we studied the uncertainty quantification in a functional approximation form of elastoplastic models parameterised by material uncertainties. The problem of estimating the polynomial chaos coefficients is recast in a linear regression form by taking into consideration the possible sparsity of the solution. Departing from the classical optimisation point of view, we take a slightly different path by solving the problem in a Bayesian manner with the help of new spectral based sparse Kalman filter algorithms
Rethinking one`s own culture
African people reflecting on their own situation will frequently
find themselves in a dilemma to identify with western and traditional values.
A case study of the Burji (Ethiopia and Kenya) examplifies this. First a
description is given of the Burji actively dealing with their problems, trying
among other things to keep Burjiness alive. Then in presenting a semiotic
model it is shown how the phenomenon of their changing group identity
(which is not grasped by theories of ethnic group or ethnicity) can be
analyzed. The model presented may be useful for analyzing similar cases
in the Third World
Inverse problems and uncertainty quantification
In a Bayesian setting, inverse problems and uncertainty quantification (UQ) -
the propagation of uncertainty through a computational (forward) model - are
strongly connected. In the form of conditional expectation the Bayesian update
becomes computationally attractive. This is especially the case as together
with a functional or spectral approach for the forward UQ there is no need for
time-consuming and slowly convergent Monte Carlo sampling. The developed
sampling-free non-linear Bayesian update is derived from the variational
problem associated with conditional expectation. This formulation in general
calls for further discretisation to make the computation possible, and we
choose a polynomial approximation. After giving details on the actual
computation in the framework of functional or spectral approximations, we
demonstrate the workings of the algorithm on a number of examples of increasing
complexity. At last, we compare the linear and quadratic Bayesian update on the
small but taxing example of the chaotic Lorenz 84 model, where we experiment
with the influence of different observation or measurement operators on the
update.Comment: 25 pages, 17 figures. arXiv admin note: text overlap with
arXiv:1201.404
Unsolvability Cores in Classification Problems
Classification problems have been introduced by M. Ziegler as a
generalization of promise problems. In this paper we are concerned with
solvability and unsolvability questions with respect to a given set or language
family, especially with cores of unsolvability. We generalize the results about
unsolvability cores in promise problems to classification problems. Our main
results are a characterization of unsolvability cores via cohesiveness and
existence theorems for such cores in unsolvable classification problems. In
contrast to promise problems we have to strengthen the conditions to assert the
existence of such cores. In general unsolvable classification problems with
more than two components exist, which possess no cores, even if the set family
under consideration satisfies the assumptions which are necessary to prove the
existence of cores in unsolvable promise problems. But, if one of the
components is fixed we can use the results on unsolvability cores in promise
problems, to assert the existence of such cores in general. In this case we
speak of conditional classification problems and conditional cores. The
existence of conditional cores can be related to complexity cores. Using this
connection we can prove for language families, that conditional cores with
recursive components exist, provided that this family admits an uniform
solution for the word problem
To be or not to be intrusive? The solution of parametric and stochastic equations - the "plain vanilla" Galerkin case
In parametric equations - stochastic equations are a special case - one may
want to approximate the solution such that it is easy to evaluate its
dependence of the parameters. Interpolation in the parameters is an obvious
possibility, in this context often labeled as a collocation method. In the
frequent situation where one has a "solver" for the equation for a given
parameter value - this may be a software component or a program - it is evident
that this can independently solve for the parameter values to be interpolated.
Such uncoupled methods which allow the use of the original solver are classed
as "non-intrusive". By extension, all other methods which produce some kind of
coupled system are often - in our view prematurely - classed as "intrusive". We
show for simple Galerkin formulations of the parametric problem - which
generally produce coupled systems - how one may compute the approximation in a
non-intusive way
- …