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Abstract. In this paper we studied the uncertainty quantification in a functional
approximation form of elastoplastic models parameterised by material uncertain-
ties. The problem of estimating the polynomial chaos coefficients is recast in a
linear regression form by taking into consideration the possible sparsity of the so-
lution. Departing from the classical optimisation point of view, we take a slightly
different path by solving the problem in a Bayesian manner with the help of new
spectral based sparse Kalman filter algorithms.

1 INTRODUCTION

Uncertainty quantification currently becomes the focus of many scientific ar-
eas, especially engineering ones, due to the presence of aleatoric and epistemic
uncertanties in the models describing for example heterogeneous media, loadings,
geometry, etc. Due to the rapid development of experimental devices and mas-
sive production of sensors, uncertainty quantification is also extensively used in
the process of probabilistic solving of inverse problems, i.e. in the prediction step
of the Bayesian inference, for example. However, most of the practically used
methods are still based on some kind of sampling either in the process of solving
the forward problem or estimation itself. The forward propagation of uncertainty
usually employs a large number of determinic software calls. However, real time
applications cannot afford this, as the estimation has to be performed under severe
time constraints.
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Bojana Rosić and Hermann G. Matthies

The focus of this paper is to show that both stages of Bayesian inference can be
resolved in essentially the same manner—by resolving the corresponding inverse
problem. Namely, the forward loop of Bayesian inference can be seen as an inverse
problem in which the measurement data are given samples. Since the number of
samples is usually much smaller than the number of parameters which describe
the model response (i.e. random variables or their functional representative —
polynomial chaos coefficients), the corresponding problem is ill-posed and thus has
to be regularised. This can be done in a Bayesian setting similar to the process of
estimation of model parameters given real measurement data. Such an approach
turns out to be the generalisation of �1 and �2-norm optimisation problems by
taking the appropriate priors on the approximation coefficients. However, the
sparsity of the solution appearing in the �1 minimisation in the Bayesian point
of view turns out to be computationally difficult, because the distributions in
Bayes rule are not conjugate. To resolve this, the sparsity priors are usually
assumed in a hierarchical setting such as the normal prior with Gamma distributed
hyperparamers used in relevance vector machine approaches [5]. On the other
hand, the stochastic search can be also done in a numerical Markov chain Monte
Carlo (MCMC) setting [6], however, this can lead to high computational costs.
Instead, in this paper the conditional expectation setting of Kolmogorov is used
in order to estimate the unknown polynomial chaos coefficients of the solution.
The methods were recently developed by the authors and formulated in a purely
algebraic setting [1, 3]. Here, the approaches are extended to include the sparsity
of the solution.

The paper is organised as follows: in Section 2 the model problem is introduced,
Section 3 is discusses its functional approximation. Section 4 presents Bayesian
regression, and the new approach is presented in Section 5. Finally, numerical
results are depicted in Section 6.

2 MODEL PROBLEM

Let (Ωθ,Bθ,Pθ) be a probability space, in which Ωθ denotes the space of all
events, Bθ is a σ-algebra of subsets of Ωθ, and Pθ is a probability measure. In
the presence of material uncertainties, here assumed to have finite variance and
belonging to L2(Ωθ), the elastoplastic material model is described by an uncertain
infinitesimal elastoplastic state w(ω) := (u(ω), εp(ω), η(ω)) in which u denotes the
displacements, εp is the plastic strain, and η is an internal variable. The state
satisfies the equilibrium equation Pθ-almost surely, i.e.:

−div σ(x, ω) = f(x, ω) ∀x ∈ Gt,

σ(x, ω) · n(x, ω) = σN(x, ω) ∀x ∈ ΓN , (1)

u(x, ω) = u0(x, ω) ∀x ∈ ΓD, ,
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with appropriate Dirichlet and Neumann boundary conditions implied on parts
ΓD and ΓN of the piecewise smooth Lipschitz continuous boundary Γ = ∂G such
that ΓD ⊆ ∂G and ΓN ⊂ ∂G, respectively. For reasons of simplicity, the last ones
are assumed to be deterministic.

The constitutive law for the elastic part is assumed to be of Hooke’s type and
is described by an uncertain isotropic homogeneous C(ω) constitutive tensor mod-
elled via bulk κ(ω) and shear G(ω) moduli taken as independent positive definite
lognormally distributed random variables. Finally, the rate of the plastic strain
is assumed to follow the associative plastic flow rule Ėp(x, ω) ∈ NK (Σ(x, ω)) in
which NK (Σ(x, ω)) is the normal cone on the convex set of addmissible stresses
K(ω) = {Σ(ω) | φK(Σ(ω)) ≤ 0 Pθ a.s.} described by the von Mises yield function
φK with uncertain yield stress σy(ω) and the hardening variables h(ω) as argu-
ments. Here, Ep := (εp, η) denotes the generalised plastic strain, and Σ := (σ, χ)
stands for the generalised stress.

For computational purposes the problem given in Eq. (1) is rewritten on weak
form following discussions in [2]. The goal is to estimate the state w ∈ H1(T ,Z )
with w(0) = 0, its dual w∗ ∈ H1(T ,Z ∗), w∗(0) = 0 and ẇ ∈ K ∞ such that

a(w(t), z) + 〈〈ẇ(t), z〉〉 = 〈〈f, z〉〉 (2)

for all z = (v, (µ, υ)) ∈ Z and

〈〈ẇ, z∗ − w∗〉〉 ≤ 0, ∀z∗ ∈ K ⊂ Z∗. (3)

hold a.s. in Ωθ and a.e. in T . Here, and 〈〈·, ·〉〉 is the duality pairing given in
terms of the mathematical expectation E(〈·, ·〉) =

∫
Ωθ
〈·, ·〉Pθ(dω), and 〈s1, s2〉 =∫

G s1s2dx. The existence and uniqueness are already studied by authors in [2],
and will be not be discussed here. After time (by the implicit Euler) and spa-
tial finite element disretisation, the formulation in Eq. (2)-Eq. (3) reduces to a
nonlinear stochastic residual equation to be solved globally for the increment of
the displacement ∆un(ω), and the first order variational inequality which corre-
sponds to the constrained stochastic quadratic convex optimisation problem (the
so-called closest point projection scheme) to be solved locally in each integration
point of the finite element scheme and the stochastic space for the increments of
the strain-like ∆Epn and the stress like ∆Σn variables. These algorithms are very
well known in the classical deterministic setting [9], albeit, their extension to the
stochastic counterpart is not an easy task, see [2].

In this paper we would like to keep the deterministic algorithms per se, and
to use them to estimate the statistics of random variables (fields) ∆wn(ω) and
∆w∗

n(ω), i.e. moments

E(∆wm
n ) =

∫

Ωθ

(∆wn(ω))
mPθ(dω), E((∆w∗

n)
m) =

∫

Ωθ

(∆w∗
n(ω))

mPθ(dω) (4)
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non-intrusively. This matches with the high-dimensional numerical integration
and the Monte Carlo type of algorithms. Due to their slow convergence rates,
a large number of evaluation points (i.e. deterministic executions of the finite
element code) are needed to achieve the desired accuracy. Therefore, to reduce
the computational cost, here we consider the functional approximation algorithms
as further described in the text.

3 FUNCTIONAL APPROXIMATION

Instead of integrating the functions y := {∆wn,∆w∗
n} directly, one may ap-

proximate the integrand in Eq. (4) by some known elementary functions, the inte-
gration of which is algebraically computable. A typical example is the generalised
polynomial chaos expansion

y(x, ω) =
∑
α∈J

y(α)(x)Ψα(θ(ω)) (5)

in which Ψα are the multi-variate polynomials with the standard random variables
θ(ω) as arguments, and x denotes the spatial position (i.e. the finite element node
for displacements or the Gauss integration point for stress- and strain-like vari-
ables). Other kinds of approximation functions can be also used, however this will
not be further discussed here. The random variables θ(ω) represent the parame-
terisation of existing uncertanties in model parameters. They are usually taken as
independent, uncorrelated random variables of a simpler kind such as normal or
uniform random variables corresponding to the Askey scheme as discussed in [10].

Given N samples of y(x, ω) one may rewrite Eq. (5) as a linear system of
equations

y(x, ωi) =
∑
α∈J

y(α)(x)Ψα(θ(ωi)), i = 1, ..., N (6)

with y(α) being unknown coefficients. Denoting s := [y(x, ωi)] ∈ RN , Ψ :=
[Ψα(θ(ωi))] ∈ RN×P and v := [y(α)(x)] ∈ RP , one may rewrite the previous equa-
tion in a matrix-vector form

s = Ψv (7)

which is equivalent to the more robust projected version

d := ΨTu = ΨTΨv =: Wv. (8)

The system in the previous equation or in Eq. (7) is quite often depicted as
underdetermined, especially when one deals with very expensive solvers, i.e. finely
discretised problems, for which N < P with P being the cardinality of the polyno-
mial expansion in Eq. (5). To tackle this problem, different kinds of regularisation
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procedures are used in the literature, the most popular among which are the reg-
ularised least square (i.e. the Tikhonov regularisation)

v = arg min

(
1

2
‖Wv − d‖22 +

λ

2
‖v‖22

)
(9)

and the basis pursuit denoising

v = arg min

(
1

2
‖Wv − d‖22 +

λ

2
‖v‖1

)
(10)

methods, also known as �2 and �1 minimisation procedures. These consist of the
squared error part used to enforce closeness of v to the data, and the regularisation
term enforcing the smoothness of v. To balance these two terms, the regularisation
parameter λ is used. However, in general the regularisation parameter λ represent-
ing the noise variance is known to be an uneducated guess, and it is difficult to find
the most optimal value. If λ = 0 both of problems are equivalent and correspond
to the classical least squares procedure. If λ > 0, then the �1 minimisation is
preferable here compared to the �2 minimisation as it promotes the sparisty of the
solution. On the other hand, in a computational setting the �2 problem is easier
to solve as the solution v is linear in the data b in contrast to the �1 minimisation.
The objective function in Eq. (10) is convex but not differentiable and thus requires
special methods such as subgradient methods [8]. In computational practice the
problem in Eq. (10) is transformed to the quadratic convex optimisation with lin-
ear inequality constraints, which can be solved by interior point methods. On the
other hand, in order to be able to recover the sparse solution, the sensing matrix
W in Eq. (10) has to satisfy the so-called restricted isometry property [11], which
is usually not the case. To ensure this, the principle of random projections [12] is
used, such that the d in Eq. (8) is projected onto a basis that consists of random
linear combination of basis functions in Ψ, i.e. the problem given in Eq. (8) is
rewritten to

b := Wd = WΨTΨv = Av (11)

in which W denotes the carefully chosen random sensing matrix. This problem
will be considered further instead of the one in Eq. (8).

4 BAYESIAN REGRESSION

In this paper the generalisation of the regularisation approach will be considered.
The method relies on the probabilistic view of Eq. (8), in which the coefficients
are assumed to be unknown, and hence priorly modelled as independent random
variables vf in (Ωξ,Bξ,Pξ),with the joint probability density function (pdf) given
as

pf (v) =
∏
α∈J

p(v(α)) (12)
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Figure 1: The stochastic version of the polynomial chaos expansion. Each realisation represents
the pdf of the expansion given one realisation of the coefficient

with p(v(α)) being the pdf of individual parameters. Following this, the linear
system in Eq. (8) becomes uncertain and is described by prediction:

bf (ξ) = Avf (ξ). (13)

This can be seen in Fig. 1, in which the schematic representation of the stochastic
version of the polynomial chaos expansion from Eq. (8) is depicted.

The pdf of the coefficients can be further updated given data via Bayes’s rule

π(v|b) ∼ p(b|v)pf (v) (14)

in which π(v|b) denotes the posterior density, p(b|v) corresponds to the likelihood,
and pf (v) is the prior. Assuming that the prior is normally distributed

pf (v) ∼ exp

(
−1

2
‖v‖22

)
(15)

as well as the likelihood, the posterior pdf obtains the form

π(v|b) ∼ exp

(
−1

2
‖Av − b‖22

)
exp

(
−1

2
‖v‖22

)
(16)

Its maximum aposteriori (MAP) estimate is the minimiser of the objective function
given in Eq. (9). Under the same assumptions, only taking the prior to follow the
Laplace distribution

pf (v) ∼ exp

(
−1

2
‖v‖1

)
, (17)
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Figure 2: The Gaussian (left) and Laplace (right) probability distributions

one may show that the posterior MAP estimate is the minimiser of the objective
function given in Eq. (10).

Similar to the deterministic setting, the process of computing the posterior
distribution given the Gaussian prior is easier than in the Laplace case. The reason
is that in the former case the prior and the likelihood are conjugate, whereas in the
latter case they are not. Hence, the posterior corresponding to the �1 minimisation
cannot be estimated algebraically, but only using some of the sampling based
approaches such as the Markov chain Monte Carlo algorithm. To avoid this, one
may consider a hierarchical type of prior which mimics the Laplace behaviour,
but it is easier to evaluate. Following [5], one may model the polynomial chaos
coefficients by normal distribution

p(v|w) =
∏
α

N (0, w−1
α ) (18)

with zero mean and the precision (inverse variance) w that follows the Gamma
distribution. The posterior distribution is then represented as

p(v,w|y) ∝ p(y|v,w)p(v|w)p(w) (19)

and cannot be computed analytically. Therefore, the posterior is re-written as

p(v,w|y) = p(v|y,w)p(w|y) (20)

in which the first term p(v|y,w) follows the normal posterior distribution, whereas
the second term is approximated by the delta function at its mode. The latter
corresponds to the maximisation of the marginal likelihood as presented in [5].
However, this kind of approach relies on the hierarchical estimation in which the
marginalisation over the hyperparameters have to be introduced, which in this
paper will be avoided.
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5 COMPRESSIVE SENSING SPRECTRAL KALMAN FILTER

To allow for the algebraic evaluation of the posterior, this paper considers a
more fundamental Kolmogorov’s approach to estimation. The method is based
on the definition of the conditional expectation as a projection onto the subspace
generated by the σ-algebra of data:

E(v|b) = Pσ(b)v (21)

Being an orthogonal projection, the conditional expectation matches the minimum
mean square estimate [1, 3]

minE(‖v − E(v|σ(b)‖2) (22)

which according to [1] implies an orthogonal decomposition

v = Pσ(b)v + (I − Pσ(b))v. (23)

However, as Pσ(b)v is difficult to compute directly, one may further refer to the
Doob-Dynkin lemma and search for an optimal map, i.e. a measurable function ϕ
such that

E(v|σ(b)) = Pσ(b)v = ϕ(b)

holds. Therefore, Eq. (23) becomes

v = ϕ(b) + (v − ϕ(b)). (24)

The first term is the projection and is altered by data, whereas the remaining
orthogonal part stays unchanged, i.e. described by our prior knowledge. This
finally leads to the filtering formula:

va(ξ) = vf (ξ) + (ϕ(b)− ϕ(bf (ξ))). (25)

Assuming that the optimal map ϕ is linear, the formula reduces to the so-called
Gauss-Markov-Kalman filter

va(ξ) = vf (ξ) +K(b− bf (ξ)), (26)

a generalisation of the classical Kalman filter form. For more details please see
[1, 3]. Here, the factor K is the Kalman gain

K = covvf ,bf (covbf + covε)
† (27)

with † denoting the pseudo-inverse, and the covariance functions defined as

covq,y := E ((q − E(q))⊗ (y − E(y))) . (28)
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The modelling error ε is here introduced as an additional term representing the
error of the truncated approximations in Eq. (11).

The linear filter as presented previously will not be optimal in the nonlinear
case. To better account for nonlinearity, one may use higher order polynomial
approximations as in [1], or turn to the iterative version of Eq. (26). The latter
one approximates the nonlinear measurement operator Y (v) in b := Y (v) + ε by
[4]

Yλ(v) = M (v − v̌) + a = M ṽ + a (29)

in which ṽ := v − v̌ (also known as the fluctuating part of the random variable v
when v̌ := E(v)) and M is the linear measurement matrix. Then, following [4],
one may design the iterative formula:

v(i+1)
a = vf +K

(i)
λ (b− a(i) −M (i)(vf − v̌(i))− ε). (30)

Here, M (i) and a(i) denote either the exact Jacobian and a := Y (E(vf )), or the
inexact Jacobian and a := E(Y (vf )) in case of an unbiased estimate [4].

The previously described filtering formulas become especially interesting when
considered in the functional approximation setting. Instead of sampling, the ran-
dom variables of interest in Eq. (26) or Eq. (30) can be represented by the poly-
nomial chaos approximations similar to those given in Eq. (5). This leads to the
purely deterministic (algebraic) filtering formula:

∑
β∈I

v(β)
a Γβ(ξ) =

∑
β∈I

v
(β)
f Γβ(ξ) +K(

∑
β∈I

b(β)Γβ(ξ)−
∑
β∈I

b
(β)
f Γβ(ξ)) (31)

in which Γ denote the polynomials corresponding to the distribution on the poly-
nomial chaos coefficients, and are not necessarily same as Ψ. Note that the first
term in the innovation part corresponds to the deterministic measurements, and
hence has only non-zero mean. By projecting the formula onto the polynomial
basis Γβ one obtains

va = vb +K(b− bf ) (32)

in which vf := [v
(β)
f ]β∈I = [v

(α,β)
f ]α∈J ,β∈I . Similarly, the Kalman gain K can be

computed using the algebraic expression for the covariance matrix

Cvf = Eξ((v̂f − v̄f )⊗ (v̂f − v̄f )) =
∑

α,β∈Jp

Eξ(ΓαΓβ)v
(α)
f ⊗ v

(β)
f − v̄f ⊗ v̄f (33)

in which v̄f := Eξ(vf ). The last relation can be further rewritten in a matrix form
as

Cvf = Ṽ f∆Ṽ T
f (34)
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in which (∆)αβ = Eξ(ΓαΓβ) = diag(α!) and Ṽ f is equal to vf := (...,v
(α)
f , ...)T

without the mean part. In a similar manner one derives algebraic formula for the
iterative filter.

The filter in Eq. (32) does not lead to the sparse solution, as only the �2 min-
imisation is performed. To allow for the sparsity of the solution, one solves

min E(‖v − E(v|σ(b))‖2) (35)

such that ‖E(v|σ(b))‖1 ≤ ε

The inequality in Eq. (35) is nonlinear, and its subgradient can be rewritten as
the pseudo-measurement equation

Z(v) := H(v)v − ε = 0 (36)

instead of Eq. (22). Here, H(v) := sign(v), and ε is the given tolerance with
the covariance Cε chosen as the regularisation parameter. The computational
algorithm consists of a sequential estimation in which the first update is obtained
by using the real measurement and Eq. (26), and the second by using the pseudo-
one and the iterative formula in Eq. (30).

6 NUMERICAL RESULTS AND CONCLUSIONS

The algorithm as described previously is tested on Cook’s membrane benchmark
problem in five loading steps (two of which are plastic). The three material param-
eters (bulk and shear moduli, as well as yield stress) are modelled as independent
lognormally distributed random variables, and the response is approximated by
Hermite polynomial chaos expansion of fourth order leading to 35 polynomial co-
efficients. The approximation is computed by using 15 random evaluation points,
and its accuracy is tested against the result obtained given 1e4 Monte Carlo simu-
lations. As depicted in Fig. 3, for the last time increment the error in both stress
and strain variables is low. Hence, the Bayesian method can catch the sparsity
of the solution. However, the error in strain-like variables is slightly higher. The
reason lies in the polynomial chaos basis which does not change in time. This can
be seen in Fig. 4, where clearly the approximation error increase with time.

According to the previous results, the suggested methods seem to be promissing,
and they will be further analysed with respect to the adaptivity of the polynomial
chaos scheme.

Acknowledgment: This project is partially funded by DFG.

REFERENCES
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