5,165 research outputs found
HCMM energy budget data as a model input for assessing regions of high potential groundwater pollution
The author has identified the following significant results. In early April 1978, heavy spring runoff from snowmelt caused significant flooding along a portion of the Big Sioux River Basin in southeastern South Dakota. The flooded area was visible from surrounding areas on a May 15 HCMM IR test image. On May 15, the flood waters had receded but an area of anomalous residual high soil moisture remained. The high soil moisture area was not visible on a HCMM day visible test image of the same scene, or on LANDSAT imagery. To evaluate the effect of water table depth on surface temperatures, thermal scanner data collected on September 5 and 6, 1978 at approximate HCMM overpass times at an altitude of 3650 m were analyzed. Apparent surface temperatures measured by the scanner included emittance contributions from soil surface and the land cover. Results indicated that the shallow water tables produced a damping of the amplitude of the diurnal surface temperature wave
HCMM energy budget data as a model input for assessing regions of high potential groundwater pollution
The author has identified the following significant results. Significant relationships were found between surface soil temperatures estimated from HCMM radiometric temperatures and depth to ground water and near surface soil moisture
HCMM energy budget data as a model input for assessing regions of high potential groundwater pollution
There are no author-identified significant results in this report
Evaluation of HCMM data for assessing soil moisture and water table depth
Soil moisture in the 0-cm to 4-cm layer could be estimated with 1-mm soil temperatures throughout the growing season of a rainfed barley crop in eastern South Dakota. Empirical equations were developed to reduce the effect of canopy cover when radiometrically estimating the soil temperature. Corrective equations were applied to an aircraft simulation of HCMM data for a diversity of crop types and land cover conditions to estimate the soil moisture. The average difference between observed and measured soil moisture was 1.6% of field capacity. Shallow alluvial aquifers were located with HCMM predawn data. After correcting the data for vegetation differences, equations were developed for predicting water table depths within the aquifer. A finite difference code simulating soil moisture and soil temperature shows that soils with different moisture profiles differed in soil temperatures in a well defined functional manner. A significant surface thermal anomaly was found to be associated with shallow water tables
HCMM energy budget data as a model input for assessing regions of high potential groundwater pollution
The author has identified the following significant results. The finite difference model was used to calculate the differences in surface temperature between two hypothetical sites which result from a temperature difference at 50 cm due to the presence of shallow ground water at one of the sites. Although qualitative results of the model seemed consistant with experimental results, further evaluation showed a need for taking account of differences in thermal conductivity due to different moisture profiles at the two sites considered
Evaluation of HCMM data for assessing soil moisture and water table depth
Data were analyzed for variations in eastern South Dakota. Soil moisture in the 0-4 cm layer could be estimated with 1-mm soil temperatures throughout the growing season of a rainfed barley crop (% cover ranging from 30% to 90%) with an r squared = 0.81. Empirical equations were developed to reduce the effect of canopy cover when radiometrically estimating the 1-mm soil temperature, r squared = 0.88. The corrective equations were applied to an aircraft simulation of HCMM data for a diversity of crop types and land cover conditions to estimate the 0-4 cm soil moisture. The average difference between observed and measured soil moisture was 1.6% of field capacity. HCMM data were used to estimate the soil moisture for four dates with an r squared = 0.55 after correction for crop conditions. Location of shallow alluvial aquifers could be accomplished with HCMM predawn data. After correction of HCMM day data for vegetation differences, equations were developed for predicting water table depths within the aquifer (r=0.8)
HCMM energy budget data as a model input for assessing regions of high potential groundwater pollution
The author has identified the following significant results. To investigate the general relationship between surface temperature and soil moisture profiles, a series of model calculations were carried out. Soil temperature profiles were calculated during a complete diurnal cycle for a variety of moisture profiles. Preliminary results indicate the surface temperature difference between two sites measured at about 1400 hours is related to the difference in soil moisture within the diurnal damping depth (about 50 cm). The model shows this temperature difference to vary considerably throughout the diurnal cycle
Soil Moisture Workshop
The Soil Moisture Workshop was held at the United States Department of Agriculture National Agricultural Library in Beltsville, Maryland on January 17-19, 1978. The objectives of the Workshop were to evaluate the state of the art of remote sensing of soil moisture; examine the needs of potential users; and make recommendations concerning the future of soil moisture research and development. To accomplish these objectives, small working groups were organized in advance of the Workshop to prepare position papers. These papers served as the basis for this report
Retain
Retain is a variety of creeping foxtail (Alopecurus arundinaceus Poir.) developed by the South Dakota Agricultural Experiment Station and released February 1, 1979. Retain does not shatter its seed immediately as it matures as does the Garrison variety of this species. It is possible to leave Retain until it has ripened and harvest it with a sickle bar combine. The greater ease of harvesting and higher yields will make the seed more readily available. Creeping foxtail is adapted to low, fairly saline areas which are flooded for about two weeks in the spring. It wil not stand as much flooding or yield as much forage as reed canary grass but is more palatable and digestible. Seed increased by the Foundation Seed Stock Division has been released to a South Dakota seed firm. Certified seed will be available from harvests made in 1981 or 1982. Plant Variety Protection has been applied for, so Retain will be sold only by variety name as certified seed
- …