5 research outputs found

    Interdisciplinary Approach to Tool-Handle Design Based on Medical Imaging

    Get PDF
    Products are becoming increasingly complex; therefore, designers are faced with a challenging task to incorporate new functionality, higher performance, and optimal shape design. Traditional user-centered design techniques such as designing with anthropometric data do not incorporate enough subject data to design products with optimal shape for best fit to the target population. To overcome these limitations, we present an interdisciplinary approach with medical imaging. The use of this approach is being presented on the development of an optimal sized and shaped tool handle where the hand is imaged using magnetic resonance imaging machine. The obtained images of the hand are reconstructed and imported into computer-aided design software, where optimal shape of the handle is obtained with Boolean operations. Methods can be used to develop fully customized products with optimal shape to provide best fit to the target population. This increases subjective comfort rating, performance and can prevent acute and cumulative trauma disorders. Provided methods are especially suited for products where high stresses and exceptional performance is expected (high performance tools, professional sports, and military equipment, etc.). With the use of these interdisciplinary methods, the value of the product is increased, which also increases the competitiveness of the product on the market

    Ergonomic analysis in conceptual design stage using a gesture-based modelling tool

    No full text
    Commonly, ergonomic analysis of the products' assembly processes starts in the embodiment design phase, when the information of the parts and their interaction are clearly defined. This may imply iterations during the design process for making improvements associated with ergonomic issues. We asked whether it is possible to infer possible ergonomic issues related to the manual assembly process during product conceptualisation. So, we integrated an AR-based modelling tool, in which the user creates and places virtual parts over the context in a top-down design strategy using his/her hands as interface, with an Ergonomic Assessment Module for continuous evaluation of the user postures, movements and forces related to the created parts. In that way, the spectrum of the potential solutions during the conceptualisation phase, when the information about the problem is vague enough, can be delimited and the convergence to the near-optimal solution may be more effective
    corecore