4,757 research outputs found
Impregnation and Adsorption of Rare Earth Elements on Amberlite XAD-7
Beads were washed then impregnated with an organophosphorous extractant D2EHPA. The washing process, as well as factors in the impregnation process were studied. Water was deemed sufficient to prewash the beads before use over small and large amounts of acid with acetone. The impregnation of beads at an Amberlite D2EHPA ratio of 1:1 was determined to be best. Absorption isotherms of Neodymium were the first to be studied. By testing different concentrations, Amberlite was determined to absorb the max amount at 4000 ppm. The pH values from 2-7 were determined to have no effect on the amount of Neodymium absorbed by Amberlite. The pH values 0 and 1 were not able to be measured by the ICP; possibly due to the large number of ions in the solution. The shaking time of Amberlite to adsorb Neodymium was determined to be over 15 hours. It is recommended to shake Amberlite with the Rare Earth solution overnight. The adsorption isotherm of Lanthanum was also tested and determined to be similar to Neodymium. When a Lanthanum and Neodymium solution was created, the isotherm showed that Neodymium adsorbed much better than Lanthanum. The elution of Neodymium from Amberlite was also achieved and the Amberlite was reloaded successfully with Neodymium
Lifting of D1-D5-P states
We consider states of the D1-D5 CFT where only the left-moving sector is
excited. As we deform away from the orbifold point, some of these states will
remain BPS while others can `lift'. We compute this lifting for a particular
family of D1-D5-P states, at second order in the deformation off the orbifold
point. We note that the maximally twisted sector of the CFT is special: the
covering surface appearing in the correlator can only be genus one while for
other sectors there is always a genus zero contribution. We use the results to
argue that fuzzball configurations should be studied for the full class
including both extremal and near-extremal states; many extremal configurations
may be best seen as special limits of near extremal configurations.Comment: 51 pages, 6 figure
Chandra observations of the HII complex G5.89-0.39 and TeV gamma-ray source HESSJ1800-240B
We present the results of our investigation, using a Chandra X-ray
observation, into the stellar population of the massive star formation region
G5.89-0.39, and its potential connection to the coincident TeV gamma-ray source
HESSJ1800-240B. G5.89-0.39 comprises two separate HII regions G5.89-0.39A and
G5.89-0.39B (an ultra-compact HII region). We identified 159 individual X-ray
point sources in our observation using the source detection algorithm
\texttt{wavdetect}. 35 X-ray sources are associated with the HII complex
G5.89-0.39. The 35 X-ray sources represent an average unabsorbed luminosity
(0.3-10\,keV) of \,erg/s, typical of B7-B5 type stars. The
potential ionising source of G5.89-0.39B known as Feldt's star is possibly
identified in our observation with an unabsorbed X-ray luminosity suggestive of
a B7-B5 star. The stacked energy spectra of these sources is well-fitted with a
single thermal plasma APEC model with kT5\,keV, and column density
N\,cm (A). The residual
(source-subtracted) X-ray emission towards G5.89-0.39A and B is about 30\% and
25\% larger than their respective stacked source luminosities. Assuming this
residual emission is from unresolved stellar sources, the total
B-type-equivalent stellar content in G5.89-0.39A and B would be 75 stars,
consistent with an earlier estimate of the total stellar mass of hot stars in
G5.89-0.39. We have also looked at the variability of the 35 X-ray sources in
G5.89-0.39. Ten of these sources are flagged as being variable. Further studies
are needed to determine the exact causes of the variability, however the
variability could point towards pre-main sequence stars. Such a stellar
population could provide sufficient kinetic energy to account for a part of the
GeV to TeV gamma-ray emission in the source HESSJ1800-240B.Comment: 34 pages, 9 figure
Space shuttle main engine hardware simulation
The Huntsville Simulation Laboratory (HSL) provides a simulation facility to test and verify the space shuttle main engine (SSME) avionics and software system using a maximum complement of flight type hardware. The HSL permits evaluations and analyses of the SSME avionics hardware, software, control system, and mathematical models. The laboratory has performed a wide spectrum of tests and verified operational procedures to ensure system component compatibility under all operating conditions. It is a test bed for integration of hardware/software/hydraulics. The HSL is and has been an invaluable tool in the design and development of the SSME
Recommended from our members
Thinking intuitively: the rich (and at times illogical) world of concepts
Intuitive knowledge of the world involves knowing what kinds of things have which properties. We express it in generalities such as “ducks lay eggs”. It contrasts with extensional knowledge about actual individuals in the world, which we express in quantified statements such as “All US Presidents are male”. Reasoning based on this intuitive knowledge, while highly fluent and plausible may in fact lead us into logical fallacy. Several lines of research point to our conceptual memory as the source of this logical failure. We represent concepts with prototypical properties, judging likelihood and argument strength on the basis of similarity between ideas. Evidence that our minds represent the world in this intuitive way can be seen in a range of phenomena, including how people interpret logical connectives applied to everyday concepts, studies of creativity and emergence in conceptual combination, and demonstrations of the logically inconsistent beliefs that people express in their everyday language
The Guppy Effect as Interference
People use conjunctions and disjunctions of concepts in ways that violate the
rules of classical logic, such as the law of compositionality. Specifically,
they overextend conjunctions of concepts, a phenomenon referred to as the Guppy
Effect. We build on previous efforts to develop a quantum model that explains
the Guppy Effect in terms of interference. Using a well-studied data set with
16 exemplars that exhibit the Guppy Effect, we developed a 17-dimensional
complex Hilbert space H that models the data and demonstrates the relationship
between overextension and interference. We view the interference effect as, not
a logical fallacy on the conjunction, but a signal that out of the two
constituent concepts, a new concept has emerged.Comment: 10 page
Experimental Evidence for Quantum Structure in Cognition
We proof a theorem that shows that a collection of experimental data of
membership weights of items with respect to a pair of concepts and its
conjunction cannot be modeled within a classical measure theoretic weight
structure in case the experimental data contain the effect called
overextension. Since the effect of overextension, analogue to the well-known
guppy effect for concept combinations, is abundant in all experiments testing
weights of items with respect to pairs of concepts and their conjunctions, our
theorem constitutes a no-go theorem for classical measure structure for common
data of membership weights of items with respect to concepts and their
combinations. We put forward a simple geometric criterion that reveals the non
classicality of the membership weight structure and use experimentally measured
membership weights estimated by subjects in experiments to illustrate our
geometrical criterion. The violation of the classical weight structure is
similar to the violation of the well-known Bell inequalities studied in quantum
mechanics, and hence suggests that the quantum formalism and hence the modeling
by quantum membership weights can accomplish what classical membership weights
cannot do.Comment: 12 pages, 3 figure
Recommended from our members
Effects of classification context on categorization in natural categories
The patterns of classification of borderline instances of eight common taxonomic categories were examined under three different instructional conditions to test two predictions: first, that lack of a specified context contributes to vagueness in categorization, and second, that altering the purpose of classification can lead to greater or lesser dependence on similarity in classification. The instructional conditions contrasted purely pragmatic with more technical/quasi-legal contexts as purposes for classification, and these were compared with a no-context control. The measures of category vagueness were between-subjects disagreement and within-subjects consistency, and the measures of similarity based categorization were category breadth and the correlation of instance categorization probability with mean rated typicality, independently measured in a neutral context. Contrary to predictions, none of the measures of vagueness, reliability, category breadth, or correlation with typicality were generally affected by the instructional setting as a function of pragmatic versus technical purposes. Only one subcondition, in which a situational context was implied in addition to a purposive context, produced a significant change in categorization. Further experiments demonstrated that the effect of context was not increased when participants talked their way through the task, and that a technical context did not elicit more all-or-none categorization than did a pragmatic context. These findings place an important boundary condition on the effects of instructional context on conceptual categorization
Meaning-focused and Quantum-inspired Information Retrieval
In recent years, quantum-based methods have promisingly integrated the
traditional procedures in information retrieval (IR) and natural language
processing (NLP). Inspired by our research on the identification and
application of quantum structures in cognition, more specifically our work on
the representation of concepts and their combinations, we put forward a
'quantum meaning based' framework for structured query retrieval in text
corpora and standardized testing corpora. This scheme for IR rests on
considering as basic notions, (i) 'entities of meaning', e.g., concepts and
their combinations and (ii) traces of such entities of meaning, which is how
documents are considered in this approach. The meaning content of these
'entities of meaning' is reconstructed by solving an 'inverse problem' in the
quantum formalism, consisting of reconstructing the full states of the entities
of meaning from their collapsed states identified as traces in relevant
documents. The advantages with respect to traditional approaches, such as
Latent Semantic Analysis (LSA), are discussed by means of concrete examples.Comment: 11 page
Relative Equilibria in the Four-Vortex Problem with Two Pairs of Equal Vorticities
We examine in detail the relative equilibria in the four-vortex problem where
two pairs of vortices have equal strength, that is, \Gamma_1 = \Gamma_2 = 1 and
\Gamma_3 = \Gamma_4 = m where m is a nonzero real parameter. One main result is
that for m > 0, the convex configurations all contain a line of symmetry,
forming a rhombus or an isosceles trapezoid. The rhombus solutions exist for
all m but the isosceles trapezoid case exists only when m is positive. In fact,
there exist asymmetric convex configurations when m < 0. In contrast to the
Newtonian four-body problem with two equal pairs of masses, where the symmetry
of all convex central configurations is unproven, the equations in the vortex
case are easier to handle, allowing for a complete classification of all
solutions. Precise counts on the number and type of solutions (equivalence
classes) for different values of m, as well as a description of some of the
bifurcations that occur, are provided. Our techniques involve a combination of
analysis and modern and computational algebraic geometry
- …
