473 research outputs found
Finite temperature molecular dynamics study of unstable stacking fault free energies in silicon
We calculate the free energies of unstable stacking fault (USF)
configurations on the glide and shuffle slip planes in silicon as a function of
temperature, using the recently developed Environment Dependent Interatomic
Potential (EDIP). We employ the molecular dynamics (MD) adiabatic switching
method with appropriate periodic boundary conditions and restrictions to atomic
motion that guarantee stability and include volume relaxation of the USF
configurations perpendicular to the slip plane. Our MD results using the EDIP
model agree fairly well with earlier first-principles estimates for the
transition from shuffle to glide plane dominance as a function of temperature.
We use these results to make contact to brittle-ductile transition models.Comment: 6 pages revtex, 4 figs, 16 refs, to appear in Phys. Rev.
Novel diffusion mechanism on the GaAs(001) surface: the role of adatom-dimer interaction
Employing first principles total energy calculations we have studied the
behavior of Ga and Al adatoms on the GaAs(001)-beta2 surface. The adsorption
site and two relevant diffusion channels are identified. The channels are
characterized by different adatom-surface dimer interaction. Both affect in a
novel way the adatom migration: in one channel the diffusing adatom jumps
across the surface dimers and leaves the dimer bonds intact, in the other one
the surface dimer bonds are broken. The two channels are taken into account to
derive effective adatom diffusion barriers. From the diffusion barriers we
conclude a strong diffusion anisotropy for both Al and Ga adatoms with the
direction of fastest diffusion parallel to the surface dimers. In agreement
with experimental observations we find higher diffusion barriers for Al than
for Ga.Comment: 4 pages, 2 figures, Phys. Rev. Lett. 79 (1997). Other related
publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm
Deformation effects in Ni nuclei produced in Si+Si at 112 MeV
Velocity and energy spectra of the light charged particles (protons and
-particles) emitted in the Si(E = 112 MeV) + Si
reaction have been measured at the Strasbourg VIVITRON Tandem facility. The
ICARE charged particle multidetector array was used to obtain exclusive spectra
of the light particles in the angular range 15 - 150 degree and to determine
the angular correlations of these particles with respect to the emission angles
of the evaporation residues. The experimental data are analysed in the
framework of the statistical model. The exclusive energy spectra of
-particles emitted from the Si + Si compound system are
generally well reproduced by Monte Carlo calculations using spin-dependent
level densities. This spin dependence approach suggests the onset of large
deformations at high spin. A re-analysis of previous -particle data
from the Si + Si compound system, using the same spin-dependent
parametrization, is also presented in the framework of a general discussion of
the occurrence of large deformation effects in the A ~ 60 mass region.Comment: 25 pages, 6 figure
Landau damping in trapped Bose-condensed gases
We study Landau damping in dilute Bose-Einstein condensed gases in both
spherical and prolate ellipsoidal harmonic traps. We solve the Bogoliubov
equations for the mode spectrum in both of these cases, and calculate the
damping by summing over transitions between excited quasiparticle states. The
results for the spherical case are compared to those obtained in the
Hartree-Fock approximation, where the excitations take on a single-particle
character, and excellent agreement between the two approaches is found. We have
also taken the semiclassical limit of the Hartree-Fock approximation and obtain
a novel expression for the Landau damping rate involving the time dependent
self-diffusion function of the thermal cloud. As a final approach, we study the
decay of a condensate mode by making use of dynamical simulations in which both
the condensate and thermal cloud are evolved explicitly as a function of time.
A detailed comparison of all these methods over a wide range of sample sizes
and trap geometries is presented.Comment: 18 pages, 13 figures, submitted to the New Journal of Physics focus
issue on Quantum Gase
Structure function of a damped harmonic oscillator
Following the Caldeira-Leggett approach to describe dissipative quantum
systems the structure function for a harmonic oscillator with Ohmic dissipation
is evaluated by an analytic continuation from euclidean to real time. The
analytic properties of the Fourier transform of the structure function with
respect to the energy transfer (the ``characteristic function'') are studied
and utilized. In the one-parameter model of Ohmic dissipation we show
explicitly that the broadening of excited states increases with the state
number without violating sum rules. Analytic and numerical results suggest that
this is a phenomenologically relevant, consistent model to include the coupling
of a single (sub-)nuclear particle to unobserved and complex degrees of
freedom.Comment: 23 pages, 5 figures, RevTex4, minor changes following referee's
comments and by PRC: the definite article in the original title has been
droppe
Ab initio simulations of the kinetic properties of the hydrogen monomer on graphene
The understanding of the kinetic properties of hydrogen (isotopes) adatoms on
graphene is important in many fields. The kinetic properties of
hydrogen-isotope (H, D and T) monomers were simulated using a composite method
consisting of density functional theory, density functional perturbation theory
and harmonic transition state theory. The kinetic changes of the magnetic
property and the aromatic bond of the hydrogenated graphene during the
desorption and diffusion of the hydrogen monomer was discussed. The vibrational
zero-point energy corrections in the activation energies were found to be
significant, ranging from 0.072 to 0.205 eV. The results obtained from
quantum-mechanically modified harmonic transition state theory were compared
with the ones obtained from classical-limit harmonic transition state theory
over a wide temperature range. The phonon spectra of hydrogenated graphene were
used to closely explain the (reversed) isotope effects in the prefactor,
activation energy and jump frequency of the hydrogen monomer. The kinetic
properties of the hydrogen-isotope monomers were simulated under conditions of
annealing for 10 minutes and of heating at a constant rate (1.0 K/s). The
isotope effect was observed; that is, a hydrogen monomer of lower mass is
desorbed and diffuses more easily (with lower activation energies). The results
presented herein are very similar to other reported experimental observations.
This study of the kinetic properties of the hydrogen monomer and many other
involved implicit mechanisms provides a better understanding of the interaction
between hydrogen and graphene.Comment: Accepted by J. Phys. Chem.
Signature of multilayer growth of 2D layered Bi2Se3 through heteroatom-assisted step-edge barrier reduction
During growth of two-dimensional (2D) materials, abrupt growth of multilayers is practically unavoidable even in the case of well-controlled growth. In epitaxial growth of a quintuple-layered Bi2Se3 film, we observe that the multilayer growth pattern deduced from in situ x-ray diffraction implies nontrivial interlayer diffusion process. Here we find that an intriguing diffusion process occurs at step edges where a slowly downward-diffusing Se adatom having a high step-edge barrier interacts with a Bi adatom pre-existing at step edges. The Se???Bi interaction lowers the high step-edge barrier of Se adatoms. This drastic reduction of the overall step-edge barrier and hence increased interlayer diffusion modifies the overall growth significantly. Thus, a step-edge barrier reduction mechanism assisted by hetero adatom???adatom interaction could be fairly general in multilayer growth of 2D heteroatomic materials
Comment on the narrow structure reported by Amaryan et al
The CLAS Collaboration provides a comment on the physics interpretation of
the results presented in a paper published by M. Amaryan et al. regarding the
possible observation of a narrow structure in the mass spectrum of a
photoproduction experiment.Comment: to be published in Physical Review
C10 and 11B+ 12C reactions from 4 to 9 MeV/nucleon
Reaction products arising from the interaction of 11B+ 12C and 10B+ 13C have been studied in the energy range 4<Elab(B)<9 MeV/nucleon. From the total fusion cross sections for the two entrance channels, the critical angular momenta have been extracted and then compared as a function of compound nucleus excitation energy. Even though a limitation in the fusion cross section was observed, no common limitation was found in the critical angular momenta for these two systems up to at least a Na23 excitation energy of 60 MeV. Above this excitation energy, the experimental uncertainties make this point less clear. Up to an excitation energy of 60 MeV in Na23, a fusion limitation based on reaching a critical density of compound nucleus states like the yrast or ''statistical'' yrast line cannot be responsible for the fusion cross section limitations observed for these entrance channels. The present data suggest that competing entrance channel processes are responsible for the observed fusion cross section limitations
Ab initio atomistic thermodynamics and statistical mechanics of surface properties and functions
Previous and present "academic" research aiming at atomic scale understanding
is mainly concerned with the study of individual molecular processes possibly
underlying materials science applications. Appealing properties of an
individual process are then frequently discussed in terms of their direct
importance for the envisioned material function, or reciprocally, the function
of materials is somehow believed to be understandable by essentially one
prominent elementary process only. What is often overlooked in this approach is
that in macroscopic systems of technological relevance typically a large number
of distinct atomic scale processes take place. Which of them are decisive for
observable system properties and functions is then not only determined by the
detailed individual properties of each process alone, but in many, if not most
cases also the interplay of all processes, i.e. how they act together, plays a
crucial role. For a "predictive materials science modeling with microscopic
understanding", a description that treats the statistical interplay of a large
number of microscopically well-described elementary processes must therefore be
applied. Modern electronic structure theory methods such as DFT have become a
standard tool for the accurate description of individual molecular processes.
Here, we discuss the present status of emerging methodologies which attempt to
achieve a (hopefully seamless) match of DFT with concepts from statistical
mechanics or thermodynamics, in order to also address the interplay of the
various molecular processes. The new quality of, and the novel insights that
can be gained by, such techniques is illustrated by how they allow the
description of crystal surfaces in contact with realistic gas-phase
environments.Comment: 24 pages including 17 figures, related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
- …