986 research outputs found
Nonlinear translational symmetric equilibria relevant to the L-H transition
Nonlinear z-independent solutions to a generalized Grad-Shafranov equation
(GSE) with up to quartic flux terms in the free functions and incompressible
plasma flow non parallel to the magnetic field are constructed
quasi-analytically. Through an ansatz the GSE is transformed to a set of three
ordinary differential equations and a constraint for three functions of the
coordinate x, in cartesian coordinates (x,y), which then are solved
numerically. Equilibrium configurations for certain values of the integration
constants are displayed. Examination of their characteristics in connection
with the impact of nonlinearity and sheared flow indicates that these
equilibria are consistent with the L-H transition phenomenology. For flows
parallel to the magnetic field one equilibrium corresponding to the H-state is
potentially stable in the sense that a sufficient condition for linear
stability is satisfied in an appreciable part of the plasma while another
solution corresponding to the L-state does not satisfy the condition. The
results indicate that the sheared flow in conjunction with the equilibrium
nonlinearity play a stabilizing role.Comment: 26 pages, 16 figure
Discretization of the velocity space in solution of the Boltzmann equation
We point out an equivalence between the discrete velocity method of solving
the Boltzmann equation, of which the lattice Boltzmann equation method is a
special example, and the approximations to the Boltzmann equation by a Hermite
polynomial expansion. Discretizing the Boltzmann equation with a BGK collision
term at the velocities that correspond to the nodes of a Hermite quadrature is
shown to be equivalent to truncating the Hermite expansion of the distribution
function to the corresponding order. The truncated part of the distribution has
no contribution to the moments of low orders and is negligible at small Mach
numbers. Higher order approximations to the Boltzmann equation can be achieved
by using more velocities in the quadrature
A causal statistical family of dissipative divergence type fluids
In this paper we investigate some properties, including causality, of a
particular class of relativistic dissipative fluid theories of divergence type.
This set is defined as those theories coming from a statistical description of
matter, in the sense that the three tensor fields appearing in the theory can
be expressed as the three first momenta of a suitable distribution function. In
this set of theories the causality condition for the resulting system of
hyperbolic partial differential equations is very simple and allow to identify
a subclass of manifestly causal theories, which are so for all states outside
equilibrium for which the theory preserves this statistical interpretation
condition. This subclass includes the usual equilibrium distributions, namely
Boltzmann, Bose or Fermi distributions, according to the statistics used,
suitably generalized outside equilibrium. Therefore this gives a simple proof
that they are causal in a neighborhood of equilibrium. We also find a bigger
set of dissipative divergence type theories which are only pseudo-statistical,
in the sense that the third rank tensor of the fluid theory has the symmetry
and trace properties of a third momentum of an statistical distribution, but
the energy-momentum tensor, while having the form of a second momentum
distribution, it is so for a different distribution function. This set also
contains a subclass (including the one already mentioned) of manifestly causal
theories.Comment: LaTex, documentstyle{article
Strong Shock Waves and Nonequilibrium Response in a One-dimensional Gas: a Boltzmann Equation Approach
We investigate the nonequilibrium behavior of a one-dimensional binary fluid
on the basis of Boltzmann equation, using an infinitely strong shock wave as
probe. Density, velocity and temperature profiles are obtained as a function of
the mixture mass ratio \mu. We show that temperature overshoots near the shock
layer, and that heavy particles are denser, slower and cooler than light
particles in the strong nonequilibrium region around the shock. The shock width
w(\mu), which characterizes the size of this region, decreases as w(\mu) ~
\mu^{1/3} for \mu-->0. In this limit, two very different length scales control
the fluid structure, with heavy particles equilibrating much faster than light
ones. Hydrodynamic fields relax exponentially toward equilibrium, \phi(x) ~
exp[-x/\lambda]. The scale separation is also apparent here, with two typical
scales, \lambda_1 and \lambda_2, such that \lambda_1 ~ \mu^{1/2} as \mu-->0$,
while \lambda_2, which is the slow scale controlling the fluid's asymptotic
relaxation, increases to a constant value in this limit. These results are
discussed at the light of recent numerical studies on the nonequilibrium
behavior of similar 1d binary fluids.Comment: 9 pages, 8 figs, published versio
Entropic force, noncommutative gravity and ungravity
After recalling the basic concepts of gravity as an emergent phenomenon, we
analyze the recent derivation of Newton's law in terms of entropic force
proposed by Verlinde. By reviewing some points of the procedure, we extend it
to the case of a generic quantum gravity entropic correction to get compelling
deviations to the Newton's law. More specifically, we study: (1) noncommutative
geometry deviations and (2) ungraviton corrections. As a special result in the
noncommutative case, we find that the noncommutative character of the manifold
would be equivalent to the temperature of a thermodynamic system. Therefore, in
analogy to the zero temperature configuration, the description of spacetime in
terms of a differential manifold could be obtained only asymptotically.
Finally, we extend the Verlinde's derivation to a general case, which includes
all possible effects, noncommutativity, ungravity, asymptotically safe gravity,
electrostatic energy, and extra dimensions, showing that the procedure is solid
versus such modifications.Comment: 8 pages, final version published on Physical Review
Relativistic Dissipative Hydrodynamics: A Minimal Causal Theory
We present a new formalism for the theory of relativistic dissipative
hydrodynamics. Here, we look for the minimal structure of such a theory which
satisfies the covariance and causality by introducing the memory effect in
irreversible currents. Our theory has a much simpler structure and thus has
several advantages for practical purposes compared to the Israel-Stewart theory
(IS). It can readily be applied to the full three-dimensional hydrodynamical
calculations. We apply our formalism to the Bjorken model and the results are
shown to be analogous to the IS.Comment: 25 pages, 2 figures, Phys. Rev. C in pres
On the kinetic systems for simple reacting spheres : modeling and linearized equations
Series: Springer Proceedings in Mathematics & Statistics, Vol. 75In this work we present some results on the kinetic theory of chemically
reacting gases, concerning the model of simple reacting spheres (SRS) for a gaseous
mixture undergoing a chemical reaction of type A1 +A2 A3 +A4. Starting from
the approach developed in paper [11], we provide properties of the SRS system
needed in the mathematical and physical analysis of the model. Our main result in
this proceedings provides basic properties of the SRS system linearized around the
equilibrium, including the explicit representations of the kernels of the linearized
SRS operators.Fundação para a Ciência e a Tecnologia (FCT), PEst-C/MAT/UI0013/2011, SFRH/BD/28795/200
Fluid moment hierarchy equations derived from quantum kinetic theory
A set of quantum hydrodynamic equations are derived from the moments of the
electrostatic mean-field Wigner kinetic equation. No assumptions are made on
the particular local equilibrium or on the statistical ensemble wave functions.
Quantum diffraction effects appear explicitly only in the transport equation
for the heat flux triad, which is the third-order moment of the Wigner
pseudo-distribution. The general linear dispersion relation is derived, from
which a quantum modified Bohm-Gross relation is recovered in the long
wave-length limit. Nonlinear, traveling wave solutions are numerically found in
the one-dimensional case. The results shed light on the relation between
quantum kinetic theory, the Bohm-de Broglie-Madelung eikonal approach, and
quantum fluid transport around given equilibrium distribution functions.Comment: 5 pages, three figures, uses elsarticle.cl
Enhancing e-Infrastructures with Advanced Technical Computing: Parallel MATLAB® on the Grid
MATLAB® is widely used within the engineering and scientific fields as the language and environment for technical computing, while collaborative Grid computing on e-Infrastructures is used by scientific communities to deliver a faster time to solution. MATLAB allows users to express parallelism in their applications, and then execute code on multiprocessor environments such as large-scale e-Infrastructures. This paper demonstrates the integration of MATLAB and Grid technology with a representative implementation that uses gLite middleware to run parallel programs. Experimental results highlight the increases in productivity and performance that users obtain with MATLAB parallel computing on Grids
A Continuum Description of Rarefied Gas Dynamics (I)--- Derivation From Kinetic Theory
We describe an asymptotic procedure for deriving continuum equations from the
kinetic theory of a simple gas. As in the works of Hilbert, of Chapman and of
Enskog, we expand in the mean flight time of the constituent particles of the
gas, but we do not adopt the Chapman-Enskog device of simplifying the formulae
at each order by using results from previous orders. In this way, we are able
to derive a new set of fluid dynamical equations from kinetic theory, as we
illustrate here for the relaxation model for monatomic gases. We obtain a
stress tensor that contains a dynamical pressure term (or bulk viscosity) that
is process-dependent and our heat current depends on the gradients of both
temperature and density. On account of these features, the equations apply to a
greater range of Knudsen number (the ratio of mean free path to macroscopic
scale) than do the Navier-Stokes equations, as we see in the accompanying
paper. In the limit of vanishing Knudsen number, our equations reduce to the
usual Navier-Stokes equations with no bulk viscosity.Comment: 16 page
- …