296 research outputs found

    Controlling two-species Mott-insulator phses in an optical lattice to form an array of dipolar molecules

    Full text link
    We consider the transfer of a two-species Bose-Einstein condensate into an optical lattice with a density such that that a Mott-insulator state with one atom per species per lattice site is obtained in the deep lattice regime. Depending on collision parameters the result could be either a `mixed' or a `separated' Mott-insulator phase. Such a `mixed' two-species insulator could then be photo-associated into an array of dipolar molecules suitable for quantum computation or the formation of a dipolar molecular condensate. For the case of a 87^{87}Rb-41^{41}K two-species BEC, however, the large inter-species scattering length makes obtaining the desired `mixed' Mott insulator phase difficult. To overcome this difficulty we investigate the effect of varying the lattice frequency on the mean-field interaction and find a favorable parameter regime under which a lattice of dipolar molecules could be generated

    Response of an atomic Bose-Einstein condensate to a rotating elliptical trap

    Full text link
    We investigate numerically the response of an atomic Bose-Einstein condensate to a weakly-elliptical rotating trap over a large range of rotation frequencies. We analyse the quadrupolar shape oscillation excited by rotation, and discriminate between its stable and unstable regimes. In the latter case, where a vortex lattice forms, we compare with experimental observations and find good agreement. By examining the role of thermal atoms in the process, we infer that the process is temperature-independent, and show how terminating the rotation gives control over the number of vortices in the lattice. We also study the case of critical rotation at the trap frequency, and observe large centre-of-mass oscillations of the condensate.Comment: 14 pages, 8 figure

    Feshbach resonances in ultracold K(39)

    Full text link
    We discover several magnetic Feshbach resonances in collisions of ultracold K(39) atoms, by studying atom losses and molecule formation. Accurate determination of the magnetic-field resonance locations allows us to optimize a quantum collision model for potassium isotopes. We employ the model to predict the magnetic-field dependence of scattering lengths and of near-threshold molecular levels. Our findings will be useful to plan future experiments on ultracold potassium atoms and molecules.Comment: 7 pages, 6 figure

    Novel Mechanism of Supersolid of Ultracold Polar Molecules in Optical Lattices

    Full text link
    We study the checkerboard supersolid of the hard-core Bose-Hubbard model with the dipole-dipole interaction. This supersolid is different from all other supersolids found in lattice models in the sense that superflow paths through which interstitials or vacancies can hop freely are absent in the crystal. By focusing on repulsive interactions between interstitials, we reveal that the long-range tail of the dipole-dipole interaction have the role of increasing the energy cost of domain wall formations. This effect produces the supersolid by the second-order hopping process of defects. We also perform exact quantum Monte Carlo simulations and observe a novel double peak structure in the momentum distribution of bosons, which is a clear evidence for supersolid. This can be measured by the time-of-flight experiment in optical lattice systems

    Theory of orbital state and spin interactions in ferromagnetic titanates

    Full text link
    A spin-orbital superexchange Hamiltonian in a Mott insulator with t2gt_{2g} orbital degeneracy is investigated. More specifically, we focus on a spin ferromagnetic state of the model and study a collective behavior of orbital angular momentum. Orbital order in the model occurs in a nontrivial way -- it is stabilized exclusively by quantum effects through the order-from-disorder mechanism. Several energetically equivalent orbital orderings are identified. Some of them are specified by a quadrupole ordering and have no unquenched angular momentum at low energy. Other states correspond to a noncollinear ordering of the orbital angular momentum and show the magnetic Bragg peaks at specific positions. Order parameters are unusually small because of strong quantum fluctuations. Orbital contribution to the resonant x-ray scattering is discussed. The dynamical magnetic structure factor in different ordered states is calculated. Predictions made should help to observe elementary excitations of orbitals and also to identify the type of the orbital order in ferromagnetic titanates. Including further a relativistic spin-orbital coupling, we derive an effective low-energy spin Hamiltonian and calculate a spin-wave spectrum, which is in good agreement with recent experimental observations in YTiO3_3.Comment: 25 pages, 17 figure

    Magnetism in a lattice of spinor Bose condensates

    Full text link
    We study the ground state magnetic properties of ferromagnetic spinor Bose-Einstein condensates confined in a deep optical lattices. In the Mott insulator regime, the ``mini-condensates'' at each lattice site behave as mesoscopic spin magnets that can interact with neighboring sites through both the static magnetic dipolar interaction and the light-induced dipolar interaction. We show that such an array of spin magnets can undergo a ferromagnetic or anti-ferromagnetic phase transition under the magnetic dipolar interaction depending on the dimension of the confining optical lattice. The ground-state spin configurations and related magnetic properties are investigated in detail

    Origin of G-type Antiferromagnetism and Orbital-Spin Structures in LaTiO3{\rm LaTiO}_3

    Full text link
    The possibility of the D3dD_{3d} distortion of TiO6{\rm TiO}_6 octahedra is examined theoretically in order to understand the origin of the G-type antiferromagnetism (AFM(G)) and experimentally observed puzzling properties of LaTiO3{\rm LaTiO}_3. By utilizing an effective spin and pseudospin Hamiltonian with the strong Coulomb repulsion, it is shown that AFM(G) state is stabilized through the lift of the t2gt_{2g}-orbital degeneracy accompanied by a tiny D3dD_{3d}-distortion . The estimated spin-exchange interaction is in agreement with that obtained by the neutron scattering. Moreover, the level-splitting energy due to the distortion can be considerably larger than the spin-orbit interaction even when the distortion becomes smaller than the detectable limit under the available experimental resolution. This suggests that the orbital momentum is fully quenched and the relativistic spin-orbit interaction is not effective in this system, in agreement with recent neutron-scattering experiment.Comment: 9 pages, 6 figure

    G-type antiferromagnetism and orbital ordering due to the crystal field from the rare-earth ions induced by the GdFeO_3-type distortion in RTiO_3 with R=La, Pr, Nd and Sm

    Full text link
    The origin of the antiferromagnetic order and puzzling properties of LaTiO_3 as well as the magnetic phase diagram of the perovskite titanates are studied theoretically. We show that in LaTiO_3, the t_{2g} degeneracy is eventually lifted by the La cations in the GdFeO_3-type structure, which generates a crystal field with nearly trigonal symmetry. This allows the description of the low-energy structure of LaTiO_3 by a single-band Hubbard model as a good starting point. The lowest-orbital occupation in this crystal field stabilizes the AFM(G) state, and well explains the spin-wave spectrum of LaTiO_3 obtained by the neutron scattering experiment. The orbital-spin structures for RTiO_3 with R=Pr, Nd and Sm are also accounted for by the same mechanism. We point out that through generating the R crystal field, the GdFeO_3-type distortion has a universal relevance in determining the orbital-spin structure of the perovskite compounds in competition with the Jahn-Teller mechanism, which has been overlooked in the literature. Since the GdFeO_3-type distortion is a universal phenomenon as is seen in a large number of perovskite compounds, this mechanism may also play important roles in other compounds of this type.Comment: 20 pages, 15 figure

    Collapse arrest and soliton stabilization in nonlocal nonlinear media

    Get PDF
    We investigate the properties of localized waves in systems governed by nonlocal nonlinear Schrodinger type equations. We prove rigorously by bounding the Hamiltonian that nonlocality of the nonlinearity prevents collapse in, e.g., Bose-Einstein condensates and optical Kerr media in all physical dimensions. The nonlocal nonlinear response must be symmetric, but can be of completely arbitrary shape. We use variational techniques to find the soliton solutions and illustrate the stabilizing effect of nonlocality.Comment: 4 pages with 3 figure
    corecore