296 research outputs found
Controlling two-species Mott-insulator phses in an optical lattice to form an array of dipolar molecules
We consider the transfer of a two-species Bose-Einstein condensate into an
optical lattice with a density such that that a Mott-insulator state with one
atom per species per lattice site is obtained in the deep lattice regime.
Depending on collision parameters the result could be either a `mixed' or a
`separated' Mott-insulator phase. Such a `mixed' two-species insulator could
then be photo-associated into an array of dipolar molecules suitable for
quantum computation or the formation of a dipolar molecular condensate. For the
case of a Rb-K two-species BEC, however, the large inter-species
scattering length makes obtaining the desired `mixed' Mott insulator phase
difficult. To overcome this difficulty we investigate the effect of varying the
lattice frequency on the mean-field interaction and find a favorable parameter
regime under which a lattice of dipolar molecules could be generated
Response of an atomic Bose-Einstein condensate to a rotating elliptical trap
We investigate numerically the response of an atomic Bose-Einstein condensate
to a weakly-elliptical rotating trap over a large range of rotation
frequencies. We analyse the quadrupolar shape oscillation excited by rotation,
and discriminate between its stable and unstable regimes. In the latter case,
where a vortex lattice forms, we compare with experimental observations and
find good agreement. By examining the role of thermal atoms in the process, we
infer that the process is temperature-independent, and show how terminating the
rotation gives control over the number of vortices in the lattice. We also
study the case of critical rotation at the trap frequency, and observe large
centre-of-mass oscillations of the condensate.Comment: 14 pages, 8 figure
Feshbach resonances in ultracold K(39)
We discover several magnetic Feshbach resonances in collisions of ultracold
K(39) atoms, by studying atom losses and molecule formation. Accurate
determination of the magnetic-field resonance locations allows us to optimize a
quantum collision model for potassium isotopes. We employ the model to predict
the magnetic-field dependence of scattering lengths and of near-threshold
molecular levels. Our findings will be useful to plan future experiments on
ultracold potassium atoms and molecules.Comment: 7 pages, 6 figure
Novel Mechanism of Supersolid of Ultracold Polar Molecules in Optical Lattices
We study the checkerboard supersolid of the hard-core Bose-Hubbard model with
the dipole-dipole interaction. This supersolid is different from all other
supersolids found in lattice models in the sense that superflow paths through
which interstitials or vacancies can hop freely are absent in the crystal. By
focusing on repulsive interactions between interstitials, we reveal that the
long-range tail of the dipole-dipole interaction have the role of increasing
the energy cost of domain wall formations. This effect produces the supersolid
by the second-order hopping process of defects. We also perform exact quantum
Monte Carlo simulations and observe a novel double peak structure in the
momentum distribution of bosons, which is a clear evidence for supersolid. This
can be measured by the time-of-flight experiment in optical lattice systems
Theory of orbital state and spin interactions in ferromagnetic titanates
A spin-orbital superexchange Hamiltonian in a Mott insulator with
orbital degeneracy is investigated. More specifically, we focus on a spin
ferromagnetic state of the model and study a collective behavior of orbital
angular momentum. Orbital order in the model occurs in a nontrivial way -- it
is stabilized exclusively by quantum effects through the order-from-disorder
mechanism. Several energetically equivalent orbital orderings are identified.
Some of them are specified by a quadrupole ordering and have no unquenched
angular momentum at low energy. Other states correspond to a noncollinear
ordering of the orbital angular momentum and show the magnetic Bragg peaks at
specific positions. Order parameters are unusually small because of strong
quantum fluctuations. Orbital contribution to the resonant x-ray scattering is
discussed. The dynamical magnetic structure factor in different ordered states
is calculated. Predictions made should help to observe elementary excitations
of orbitals and also to identify the type of the orbital order in ferromagnetic
titanates. Including further a relativistic spin-orbital coupling, we derive an
effective low-energy spin Hamiltonian and calculate a spin-wave spectrum, which
is in good agreement with recent experimental observations in YTiO.Comment: 25 pages, 17 figure
Magnetism in a lattice of spinor Bose condensates
We study the ground state magnetic properties of ferromagnetic spinor
Bose-Einstein condensates confined in a deep optical lattices. In the Mott
insulator regime, the ``mini-condensates'' at each lattice site behave as
mesoscopic spin magnets that can interact with neighboring sites through both
the static magnetic dipolar interaction and the light-induced dipolar
interaction. We show that such an array of spin magnets can undergo a
ferromagnetic or anti-ferromagnetic phase transition under the magnetic dipolar
interaction depending on the dimension of the confining optical lattice. The
ground-state spin configurations and related magnetic properties are
investigated in detail
Origin of G-type Antiferromagnetism and Orbital-Spin Structures in
The possibility of the distortion of octahedra is
examined theoretically in order to understand the origin of the G-type
antiferromagnetism (AFM(G)) and experimentally observed puzzling properties of
. By utilizing an effective spin and pseudospin Hamiltonian with
the strong Coulomb repulsion, it is shown that AFM(G) state is stabilized
through the lift of the -orbital degeneracy accompanied by a tiny
-distortion . The estimated spin-exchange interaction is in agreement
with that obtained by the neutron scattering. Moreover, the level-splitting
energy due to the distortion can be considerably larger than the spin-orbit
interaction even when the distortion becomes smaller than the detectable limit
under the available experimental resolution. This suggests that the orbital
momentum is fully quenched and the relativistic spin-orbit interaction is not
effective in this system, in agreement with recent neutron-scattering
experiment.Comment: 9 pages, 6 figure
G-type antiferromagnetism and orbital ordering due to the crystal field from the rare-earth ions induced by the GdFeO_3-type distortion in RTiO_3 with R=La, Pr, Nd and Sm
The origin of the antiferromagnetic order and puzzling properties of LaTiO_3
as well as the magnetic phase diagram of the perovskite titanates are studied
theoretically. We show that in LaTiO_3, the t_{2g} degeneracy is eventually
lifted by the La cations in the GdFeO_3-type structure, which generates a
crystal field with nearly trigonal symmetry. This allows the description of the
low-energy structure of LaTiO_3 by a single-band Hubbard model as a good
starting point. The lowest-orbital occupation in this crystal field stabilizes
the AFM(G) state, and well explains the spin-wave spectrum of LaTiO_3 obtained
by the neutron scattering experiment. The orbital-spin structures for RTiO_3
with R=Pr, Nd and Sm are also accounted for by the same mechanism. We point out
that through generating the R crystal field, the GdFeO_3-type distortion has a
universal relevance in determining the orbital-spin structure of the perovskite
compounds in competition with the Jahn-Teller mechanism, which has been
overlooked in the literature. Since the GdFeO_3-type distortion is a universal
phenomenon as is seen in a large number of perovskite compounds, this mechanism
may also play important roles in other compounds of this type.Comment: 20 pages, 15 figure
Collapse arrest and soliton stabilization in nonlocal nonlinear media
We investigate the properties of localized waves in systems governed by
nonlocal nonlinear Schrodinger type equations. We prove rigorously by bounding
the Hamiltonian that nonlocality of the nonlinearity prevents collapse in,
e.g., Bose-Einstein condensates and optical Kerr media in all physical
dimensions. The nonlocal nonlinear response must be symmetric, but can be of
completely arbitrary shape. We use variational techniques to find the soliton
solutions and illustrate the stabilizing effect of nonlocality.Comment: 4 pages with 3 figure
- …