3,115 research outputs found
Co-registration of Laser Altimeter Tracks with Digital Terrain Models and Applications in Planetary Science
We have derived algorithms and techniques to precisely co-register laser altimeter profiles with gridded Digital Terrain Models (DTMs), typically derived from stereo images. The algorithm consists of an initial grid search followed by a least-squares matching and yields the translation parameters at sub-pixel level needed to align the DTM and the laser profiles in 3D space. This software tool was primarily developed and tested for co-registration of laser profiles from the Lunar Orbiter Laser Altimeter (LOLA) with DTMs derived from the Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) stereo images. Data sets can be co-registered with positional accuracy between 0.13 m and several meters depending on the pixel resolution and amount of laser shots, where rough surfaces typically result in more accurate co-registrations. Residual heights of the data sets are as small as 0.18 m. The software can be used to identify instrument misalignment, orbit errors, pointing jitter, or problems associated with reference frames being used. Also, assessments of DTM effective resolutions can be obtained. From the correct position between the two data sets, comparisons of surface morphology and roughness can be made at laser footprint- or DTM pixel-level. The precise co-registration allows us to carry out joint analysis of the data sets and ultimately to derive merged high-quality data products. Examples of matching other planetary data sets, like LOLA with LRO Wide Angle Camera (WAC) DTMs or Mars Orbiter Laser Altimeter (MOLA) with stereo models from the High Resolution Stereo Camera (HRSC) as well as Mercury Laser Altimeter (MLA) with Mercury Dual Imaging System (MDIS) are shown to demonstrate the broad science applications of the software tool
Partisan impacts on the economy: evidence from prediction markets and close elections
Analyses of the effects of election outcomes on the economy have been hampered by the problem that economic outcomes also influence elections. We sidestep these problems by analyzing movements in economic indicators caused by clearly exogenous changes in expectations about the likely winner during election day. Analyzing high frequency financial fluctuations following the release of flawed exit poll data on election day 2004, and then during the vote count we find that markets anticipated higher equity prices, interest rates and oil prices, and a stronger dollar under a George W. Bush presidency than under John Kerry. A similar Republican–Democrat differential was also observed for the 2000 Bush–Gore contest. Prediction market based analyses of all presidential elections since 1880 also reveal a similar pattern of partisan impacts, suggesting that electing a Republican president raises equity valuations by 2–3 percent, and that since Ronald Reagan, Republican presidents have tended to raise bond yields
Urban Inequality
What impact does inequality have on metropolitan areas? Crime rates are higher in places with more inequality, and people in unequal cities are more likely to say that they are unhappy. There is also a negative association between local inequality and the growth of both income and population, once we control for the initial distribution of skills. What determines the degree of inequality across metropolitan areas? Twenty years ago, metropolitan inequality was strongly associated with poverty, but today, inequality is more strongly linked to the presence of the wealthy. Inequality in skills can explain about one third of the variation in income inequality, and that skill inequality is itself explained by historical schooling patterns and immigration. There are also substantial differences in the returns to skill, related to local concentrations in different industries, and these too are strongly correlated with inequality.
Noninvasive electron microscopy with interaction-free quantum measurements
We propose the use of interaction-free quantum measurements with electrons to eliminate sample damage in electron microscopy. This might allow noninvasive molecular-resolution imaging. We show the possibility of such measurements in the presence of experimentally measured quantum decoherence rates and using a scheme based on existing charged particle trapping techniques.David and Lucile Packard Foundatio
- …