893 research outputs found

    The great outdoors: how a green exercise environment can benefit all

    Get PDF
    The studies of human and environment interactions usually consider the extremes of environment on individuals or how humans affect the environment. It is well known that physical activity improves both physiological and psychological well-being, but further evidence is required to ascertain how different environments influence and shape health. This review considers the declining levels of physical activity, particularly in the Western world, and how the environment may help motivate and facilitate physical activity. It also addresses the additional physiological and mental health benefits that appear to occur when exercise is performed in an outdoor environment. However, people's connectedness to nature appears to be changing and this has important implications as to how humans are now interacting with nature. Barriers exist, and it is important that these are considered when discussing how to make exercise in the outdoors accessible and beneficial for all. The synergistic combination of exercise and exposure to nature and thus the 'great outdoors' could be used as a powerful tool to help fight the growing incidence of both physical inactivity and non-communicable disease. © 2013 Gladwell et al.; licensee BioMed Central Ltd

    Estimating the critical and sensitive periods of investment in early childhood: A methodological note

    Get PDF
    This paper provides an overview of different quantitative methods available for the statistical analysis of longitudinal data regarding child development, and in particular the identification of critical and sensitive periods for later abilities. It draws heavily on the work on human skill formation developed by the economist James Heckman, which treats ability as a latent variable and explains its formation through the simultaneous estimation of structural equations of investments and achieved abilities across time. We distinguish between two specifications of the ability formation function. One of them (the ‘recursive’) format explains current ability as a function of the ability and investment at the immediately preceding period. The other (the ‘non-recursive’) format explains current ability as a function of a series of past investments. In order to fully examine critical and sensitive periods of investments, the non-recursive formulation needs to be used. Furthermore, true abilities of an individual cannot be directly observed: what we observe are the test scores, for example, on reading and writing. We outline an approach based on structural models that treats actual test scores as measurements of the latent ability variable, and show how it can be used in the recursive and non-recursive formulation. In order to fully examine critical and sensitive periods of investments, we argue that the non-recursive formulation of this structural model is necessary. However, the non-recursive formulation requires more data than the recursive formulation, and to the best of our knowledge, has never been used in the identification of critical and sensitive periods in early childhood development. (254wds

    Reconstructing Jacobi Matrices from Three Spectra

    Full text link
    Cut a Jacobi matrix into two pieces by removing the n-th column and n-th row. We give neccessary and sufficient conditions for the spectra of the original matrix plus the spectra of the two submatrices to uniqely determine the original matrix. Our result contains Hostadt's original result as a special case

    How to construct spin chains with perfect state transfer

    Full text link
    It is shown how to systematically construct the XXXX quantum spin chains with nearest-neighbor interactions that allow perfect state transfer (PST). Sets of orthogonal polynomials (OPs) are in correspondence with such systems. The key observation is that for any admissible one-excitation energy spectrum, the weight function of the associated OPs is uniquely prescribed. This entails the complete characterization of these PST models with the mirror symmetry property arising as a corollary. A simple and efficient algorithm to obtain the corresponding Hamiltonians is presented. A new model connected to a special case of the symmetric qq-Racah polynomials is offered. It is also explained how additional models with PST can be derived from a parent system by removing energy levels from the one-excitation spectrum of the latter. This is achieved through Christoffel transformations and is also completely constructive in regards to the Hamiltonians.Comment: 7 page

    Quantum Speed Limit for Perfect State Transfer in One Dimension

    Full text link
    The basic idea of spin chain engineering for perfect quantum state transfer (QST) is to find a set of coupling constants in the Hamiltonian, such that a particular state initially encoded on one site will evolve freely to the opposite site without any dynamical controls. The minimal possible evolution time represents a speed limit for QST. We prove that the optimal solution is the one simulating the precession of a spin in a static magnetic field. We also argue that, at least for solid-state systems where interactions are local, it is more realistic to characterize the computation power by the couplings than the initial energy.Comment: 5 pages, no figure; improved versio

    Effective non-Markovian description of a system interacting with a bath

    Get PDF
    We study a harmonic system coupled to chain of first neighbor interacting oscillators. After deriving the exact dynamics of the system, we prove that one can effectively describe the exact dynamics by considering a suitable shorter chain. We provide the explicit expression for such an effective dynamics and we provide an upper bound on the error one makes considering it instead of the dynamics of the full chain. We eventually prove how error, timescale and number of modes in the truncated chain are related

    Inverse eigenvalue problem for discrete three-diagonal Sturm-Liouville operator and the continuum limit

    Full text link
    In present article the self-contained derivation of eigenvalue inverse problem results is given by using a discrete approximation of the Schroedinger operator on a bounded interval as a finite three-diagonal symmetric Jacobi matrix. This derivation is more correct in comparison with previous works which used only single-diagonal matrix. It is demonstrated that inverse problem procedure is nothing else than well known Gram-Schmidt orthonormalization in Euclidean space for special vectors numbered by the space coordinate index. All the results of usual inverse problem with continuous coordinate are reobtained by employing a limiting procedure, including the Goursat problem -- equation in partial derivatives for the solutions of the inversion integral equation.Comment: 19 pages There were made some additions (and reformulations) to the text making the derivation of the results more precise and understandabl

    Perfect State Transfer, Effective Gates and Entanglement Generation in Engineered Bosonic and Fermionic Networks

    Full text link
    We show how to achieve perfect quantum state transfer and construct effective two-qubit gates between distant sites in engineered bosonic and fermionic networks. The Hamiltonian for the system can be determined by choosing an eigenvalue spectrum satisfying a certain condition, which is shown to be both sufficient and necessary in mirror-symmetrical networks. The natures of the effective two-qubit gates depend on the exchange symmetry for fermions and bosons. For fermionic networks, the gates are entangling (and thus universal for quantum computation). For bosonic networks, though the gates are not entangling, they allow two-way simultaneous communications. Protocols of entanglement generation in both bosonic and fermionic engineered networks are discussed.Comment: RevTeX4, 6 pages, 1 figure; replaced with a more general example and clarified the sufficient and necessary condition for perfect state transfe

    Estimating the impact of health on NEET status

    Get PDF
    This paper uses a dynamic Structural Equation Model of ability formation to investigate the determinants of NEET (not in education, employment or training) status in adolescents, with special focus on health. The model addresses the issue of measurement error in estimating ability and mental health; and explores the determinants of ability and NEET status through time. The analysis finds that ability remains the key predictor of NEET status; and while general health plays an important role in the formation of ability for both girls and boys, the impact of mental health differs between the sexes

    Almost Block Diagonal Linear Systems: Sequential and Parallel Solution Techniques, and Applications

    Get PDF
    Almost block diagonal (ABD) linear systems arise in a variety of contexts, specifically in numerical methods for two-point boundary value problems for ordinary differential equations and in related partial differential equation problems. The stable, efficient sequential solution of ABDs has received much attention over the last fifteen years and the parallel solution more recently. We survey the fields of application with emphasis on how ABDs and bordered ABDs (BABDs) arise. We outline most known direct solution techniques, both sequential and parallel, and discuss the comparative efficiency of the parallel methods. Finally, we examine parallel iterative methods for solving BABD systems. Copyright (C) 2000 John Wiley & Sons, Ltd
    • …
    corecore