20 research outputs found

    New insights into the photochemistry of carotenoid spheroidenone in light-harvesting complex 2 from the purple bacterium Rhodobacter sphaeroides

    Get PDF
    Light-harvesting complex 2 (LH2) from the semi-aerobically grown purple phototrophic bacterium Rhodobacter sphaeroides was studied using optical (static and time-resolved) and resonance Raman spectroscopies. This antenna complex comprises bacteriochlorophyll (BChl) a and the carotenoid spheroidenone, a ketolated derivative of spheroidene. The results indicate that the spheroidenone-LH2 complex contains two spectral forms of the carotenoid: (1) a minor, ‘‘blue’’ form with an S2 (11 Bu ?) spectral origin band at 522 nm, shifted from the position in organic media simply by the high polarizability of the binding site, and (2) the major, ‘‘red’’ form with the origin band at 562 nm that is associated with a pool of pigments that more strongly interact with protein residues, most likely via hydrogen bonding. Application of targeted modeling of excited-state decay pathways after carotenoid excitation suggests that the high (92%) carotenoid-to-BChl energy transfer efficiency in this LH2 system, relative to LH2 complexes binding carotenoids with comparable double-bond conjugation lengths, derives mainly from resonance energy transfer from spheroidenone S2 (11 Bu ?) state to BChl a via the Qx state of the latter, accounting for 60% of the total transfer. The elevated S2 (11 Bu ?) ? Qx transfer efficiency is apparently associated with substantially decreased energy gap (increased spectral overlap) between the virtual S2 (11 Bu ?) ? S0 (11 Ag -) carotenoid emission and Qx absorption of BChl a. This reduced energetic gap is the ultimate consequence of strong carotenoid–protein interactions, including the inferred hydrogen bondin

    Dynamics of energy transfer from lycopene to bacteriochlorophyll in genetically-modified LH2 complexes of Rhodobacter sphaeroides

    No full text
    LH2 complexes from Rb. sphaeroides were modified genetically so that lycopene, with I I saturated double bonds, replaced the native carotenoids which contain 10 saturated double bonds. Tuning the S, level of the carotenoid in LH2 in this way affected the dynamics of energy transfer within LH2, which were investigated using both steady-state and time-resolved techniques. The S I energy of lycopene in n-hexane was determined to be similar to12 500 +/- 150 cm(-1), by direct measurement of the S-1-S-2 transient absorption spectrum using a femtosecond IR-probing technique, thus placing an upper limit on the S, energy of lycopene in the LH2 complex. Fluorescence emission and excitation spectra demonstrated that energy can be transferred from lycopene to the bacteriochlorophyll molecules within this LH2 complex. The energy-transfer dynamics within the mutant complex were compared to wild-type LH2 from Rb. sphaeroides containing the carotenoid spheroidene and from Rs. molischian1l7n, in which lycopene is the native carotenoid. The results show that the overall efficiency for Crt --> B850 energy transfer is similar to80% in lyco-LH2 and similar to95% in WT-LH2 of Rb. sphaeroides. The difference in overall Crt --> BChl transfer efficiency of lyco-LH2 and WT-LH2 mainly relates to the low efficiency of the Crt S-1 --> BChl pathway for complexes containing lycopene, which was 20% in lyco-LH2. These results show that in an LH2 complex where the Crt Si energy is sufficiently high to provide efficient spectral overlap with both B800 and B850 Q(y) states, energy transfer via the Crt S, state occurs to both pigments. However, the introduction of lycopene into the Rb. sphaeroides LH2 complex lowers the S-1 level of the carotenoid sufficiently to prevent efficient transfer of energy to the B 800 Q, state, leaving only the Crt S-1 --> B 850 channel, strongly suggesting that Crt S-1 --> BChl energy transfer is controlled by the relative Crt S-1 and BChl Q(y) energies

    Ultrafast carotenoid band shifts: Experiment and theory

    No full text
    The ultrafast carotenoid band shift upon excitation of nearby bacteriochlorophyll molecules was studied in three different light harvesting complexes from purple bacteria. The results were analyzed in terms of changes in local electric field of the carotenoids. Time dependent density functional theory calculations based on known and model structures led to good agreement with experimental results, strongly suggesting that the mutual orientation of the pigment molecules rather than the type of the carotenoid molecules determines the extent of the ultrafast band shift. We further estimate that the protein induced local field nearby carotenoid molecule is about 4 or 6 MV/cm, depending on the orientation of the change of the electrical dipole in the carotenoid upon optical transition
    corecore