Light-harvesting complex 2 (LH2) from the
semi-aerobically grown purple phototrophic bacterium
Rhodobacter sphaeroides was studied using optical (static
and time-resolved) and resonance Raman spectroscopies.
This antenna complex comprises bacteriochlorophyll
(BChl) a and the carotenoid spheroidenone, a ketolated
derivative of spheroidene. The results indicate that the
spheroidenone-LH2 complex contains two spectral forms
of the carotenoid: (1) a minor, ‘‘blue’’ form with an S2
(11
Bu
?) spectral origin band at 522 nm, shifted from the
position in organic media simply by the high polarizability
of the binding site, and (2) the major, ‘‘red’’ form with the
origin band at 562 nm that is associated with a pool of
pigments that more strongly interact with protein residues,
most likely via hydrogen bonding. Application of targeted
modeling of excited-state decay pathways after carotenoid
excitation suggests that the high (92%) carotenoid-to-BChl
energy transfer efficiency in this LH2 system, relative to
LH2 complexes binding carotenoids with comparable
double-bond conjugation lengths, derives mainly from
resonance energy transfer from spheroidenone S2 (11
Bu
?)
state to BChl a via the Qx state of the latter, accounting for
60% of the total transfer. The elevated S2 (11
Bu
?) ? Qx
transfer efficiency is apparently associated with substantially
decreased energy gap (increased spectral overlap)
between the virtual S2 (11
Bu
?) ? S0 (11
Ag
-) carotenoid
emission and Qx absorption of BChl a. This reduced
energetic gap is the ultimate consequence of strong carotenoid–protein
interactions, including the inferred hydrogen
bondin