108,751 research outputs found
Limit Cycle Bifurcations from Centers of Symmetric Hamiltonian Systems Perturbing by Cubic Polynomials
In this paper, we consider some cubic near-Hamiltonian systems obtained from
perturbing the symmetric cubic Hamiltonian system with two symmetric singular
points by cubic polynomials. First, following Han [2012] we develop a method to
study the analytical property of the Melnikov function near the origin for
near-Hamiltonian system having the origin as its elementary center or nilpotent
center. Based on the method, a computationally efficient algorithm is
established to systematically compute the coefficients of Melnikov function.
Then, we consider the symmetric singular points and present the conditions for
one of them to be elementary center or nilpotent center. Under the condition
for the singular point to be a center, we obtain the normal form of the
Hamiltonian systems near the center. Moreover, perturbing the symmetric cubic
Hamiltonian systems by cubic polynomials, we consider limit cycles bifurcating
from the center using the algorithm to compute the coefficients of Melnikov
function. Finally, perturbing the symmetric hamiltonian system by symmetric
cubic polynomials, we consider the number of limit cycles near one of the
symmetric centers of the symmetric near-Hamiltonian system, which is same to
that of another center
Probabilistic teleportation of unknown two-particle state via POVM
We propose a scheme for probabilistic teleportation of unknown two-particle
state with partly entangled four-particle state via POVM. In this scheme the
teleportation of unknown two-particle state can be realized with certain
probability by performing two Bell state measurements, a proper POVM and a
unitary transformation.Comment: 5 pages, no figur
DecideNet: Counting Varying Density Crowds Through Attention Guided Detection and Density Estimation
In real-world crowd counting applications, the crowd densities vary greatly
in spatial and temporal domains. A detection based counting method will
estimate crowds accurately in low density scenes, while its reliability in
congested areas is downgraded. A regression based approach, on the other hand,
captures the general density information in crowded regions. Without knowing
the location of each person, it tends to overestimate the count in low density
areas. Thus, exclusively using either one of them is not sufficient to handle
all kinds of scenes with varying densities. To address this issue, a novel
end-to-end crowd counting framework, named DecideNet (DEteCtIon and Density
Estimation Network) is proposed. It can adaptively decide the appropriate
counting mode for different locations on the image based on its real density
conditions. DecideNet starts with estimating the crowd density by generating
detection and regression based density maps separately. To capture inevitable
variation in densities, it incorporates an attention module, meant to
adaptively assess the reliability of the two types of estimations. The final
crowd counts are obtained with the guidance of the attention module to adopt
suitable estimations from the two kinds of density maps. Experimental results
show that our method achieves state-of-the-art performance on three challenging
crowd counting datasets.Comment: CVPR 201
Effects of spin imbalance on the electric-field driven quantum dissipationless spin current in -doped Semiconductors
It was proposed recently by Murakami et al. [Science \textbf{301},
1348(2003)] that in a large class of -doped semiconductors, an applied
electric field can drive a quantum dissipationless spin current in the
direction perpendicular to the electric field. In this paper we investigate the
effects of spin imbalance on this intrinsic Hall effect. We show that in
a real sample with boundaries, due to the presence of spin imbalance near the
edges of the sample, the spin Hall conductivity is not a constant but a
sensitively - quantity, and due to this fact, in order to
take the effects of spin imbalance properly into account, a microscopic
calculation of both the quantum dissipationless spin Hall current and the spin
accumulation on an equal footing is thus required. Based on such a microscopic
calculation, a detailed discussion of the effects of spin imbalance on the
intrinsic spin Hall effect in thin slabs of -doped semiconductors are
presented.Comment: 8 pages, 2 figures, An extended version with detailed calculations To
appear in Phys. Rev.
The Effects of Halo Assembly Bias on Self-Calibration in Galaxy Cluster Surveys
Self-calibration techniques for analyzing galaxy cluster counts utilize the
abundance and the clustering amplitude of dark matter halos. These properties
simultaneously constrain cosmological parameters and the cluster
observable-mass relation. It was recently discovered that the clustering
amplitude of halos depends not only on the halo mass, but also on various
secondary variables, such as the halo formation time and the concentration;
these dependences are collectively termed assembly bias. Applying modified
Fisher matrix formalism, we explore whether these secondary variables have a
significant impact on the study of dark energy properties using the
self-calibration technique in current (SDSS) and the near future (DES, SPT, and
LSST) cluster surveys. The impact of the secondary dependence is determined by
(1) the scatter in the observable-mass relation and (2) the correlation between
observable and secondary variables. We find that for optical surveys, the
secondary dependence does not significantly influence an SDSS-like survey;
however, it may affect a DES-like survey (given the high scatter currently
expected from optical clusters) and an LSST-like survey (even for low scatter
values and low correlations). For an SZ survey such as SPT, the impact of
secondary dependence is insignificant if the scatter is 20% or lower but can be
enhanced by the potential high scatter values introduced by a highly correlated
background. Accurate modeling of the assembly bias is necessary for cluster
self-calibration in the era of precision cosmology.Comment: 13 pages, 5 figures, replaced to match published versio
Consistency of shared reference frames should be reexamined
In a recent Letter [G. Chiribella et al., Phys. Rev. Lett. 98, 120501
(2007)], four protocols were proposed to secretly transmit a reference frame.
Here We point out that in these protocols an eavesdropper can change the
transmitted reference frame without being detected, which means the consistency
of the shared reference frames should be reexamined. The way to check the above
consistency is discussed. It is shown that this problem is quite different from
that in previous protocols of quantum cryptography.Comment: 3 pages, 1 figure, comments are welcom
A strong constitutive ethylene-response phenotype conferred on Arabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS1
Background: The ethylene receptor family of Arabidopsis consists of five members, falling into two subfamilies. Subfamily 1 is composed of ETR1 and ERS1, and subfamily 2 is composed of ETR2, ERS2, and EIN4. Although mutations have been isolated in the genes encoding all five family members, the only previous insertion allele of ERS1 (ers1-2) is a partial loss-of-function mutation based on our analysis. The purpose of this study was to determine the extent of signaling mediated by subfamily-1 ethylene receptors through isolation and characterization of null mutations.
Results: We isolated new T-DNA insertion alleles of subfamily 1 members ERS1 and ETR1 (ers1-3 and etr1-9, respectively), both of which are null mutations based on molecular, biochemical, and genetic analyses. Single mutants show an ethylene response similar to wild type, although both mutants are slightly hypersensitive to ethylene. Double mutants of ers1-3 with etr1-9, as well as with the previously isolated etr1-7, display a constitutive ethylene-response phenotype more pronounced than that observed with any previously characterized combination of ethylene receptor mutations. Dark-grown etr1-9;ers1-3 and etr1-7;ers1-3 seedlings display a constitutive triple-response phenotype. Light-grown etr1-9;ers1-3 and etr1-7;ers1-3 plants are dwarfed, largely sterile, exhibit premature leaf senescence, and develop novel filamentous structures at the base of the flower. A reduced level of ethylene response was still uncovered in the double mutants, indicating that subfamily 2 receptors can independently contribute to signaling, with evidence suggesting that this is due to their interaction with the Raf-like kinase CTR1.
Conclusion: Our results are consistent with the ethylene receptors acting as redundant negative regulators of ethylene signaling, but with subfamily 1 receptors playing the predominant role. Loss of a single member of subfamily 1 is largely compensated for by the activity of the other member, but loss of both subfamily members results in a strong constitutive ethylene-response phenotype. The role of subfamily 1 members is greater than previously suspected and analysis of the double mutant null for both ETR1 and ERS1 uncovers novel roles for the receptors not previously characterized
- …
