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It was proposed recently by Murakamiet al. [Science301, 1348 (2003)] that in a large class ofp-doped
semiconductors, an applied electric field can drive a quantum dissipationless spin current in the direction
perpendicular to the electric field. In this paper we investigate the effects of spin imbalance on this intrinsic
spinHall effect. We show that in a real sample with boundaries, due to the presence of spin imbalance near the
edges of the sample, the spin Hall conductivity is not a constant but a sensitivelyposition-dependentquantity,
and due to this fact, in order to take the effects of spin imbalance properly into account, a microscopic
calculation of both the quantum dissipationless spin Hall current and the spin accumulation on an equal footing
is thus required. Based on such a microscopic calculation, a detailed discussion of the effects of spin imbalance
on the intrinsic spin Hall effect in thin slabs ofp-doped semiconductors are presented.

DOI: 10.1103/PhysRevB.70.235323 PACS number(s): 73.43.2f, 72.25.Dc, 72.25.Hg, 85.75.2d

I. INTRODUCTION

Efficient injection and coherent control of spins in non-
magnetic semiconductors represent two principal challenges
in the emerging field of spintronics, a paradigm of semicon-
ductor electronics based on the utilization of the electron’s
spin degree of freedom.1 At a first glance, it seems a trivial
thing to inject spins into nonmagnetic semiconductors by use
of ferromagnetic metals as sources. However, in reality it is
not practical because most of the spin polarizations will be
lost at the interface between metal and semiconductor due to
the large conductivity mismatch.2,3 A possible approach that
can solve this problem is to replace ferromagnetic metals by
ferromagnetic semiconductors(such as Ga1−xMnxAs) as
sources of spin injection,4–6 but for practical use at room
temperature, the Curie temperatures of ferromagnetic semi-
conductors are still too low. Due to such difficulties, how to
achieve efficient injection of spins into nonmagnetic semi-
conductors at room temperature remains an open question
and more great efforts are still needed. Recently, based on
the Luttinger effective Hamiltonian,7 Murakami et al. theo-
retically predicted that an extraordinaryspinHall effect may
occur in a large class ofp-doped semiconductors(such as Si,
Ge, and GaAs), which means that in such a semiconductor,
an applied electric field can drive a substantial amount of
quantum dissipationless spin current in the direction perpen-
dicular to the electric field, and the spin current does not
decrease substantially even at room temperature.8,9 This ef-
fect might reveal a new way for achieving efficient spin in-
jection in nonmagnetic semiconductors at room temperature
without the need of ferromagnetic metals and may also find
some other important applications in spintronics. Prior to the
discovery of this effect, a similar effect was also predicted by
Hirsch10 and discussed extensively by several other
authors.11,12 From the theoretical points of view, the effect
conceived by Hirsch is anextrinsicspin Hall effect, which is
caused by the spin-orbit dependent anisotropic scatterings
from impurities but not an intrinsic property of a material,

and it will disappear completely in the absence of impurity
scatterings. The spin current generated by the extrinsic spin
Hall effect was shown to be rather small,10–12so it is of little
use in the problem of spin injections in nonmagnetic semi-
conductors. Unlike the extrinsic spin Hall effect, the spin
Hall effect proposed in Refs. 8 and 9 is purelyintrinsic,
which arises from the intrinsic spin-orbit coupling in the va-
lence bands ofp-doped semiconductors and does not rely on
any spin-orbit-dependent anisotropic scatterings from impu-
rities. From a more profound point of view, this effect has a
deep topological character and shares some basic features
with the quantum Hall edge current both physically and
mathematically.8,9 For example, just like the case of quantum
Hall effect,13–15 the spin Hall conductivity due to this effect
is a dissipationless transport coefficient and can be expressed
as an integral over all states below the Fermi energy, and the
contribution of each state can be expressed entirely in terms
of the curvature of a gauge field in momentum space.8,9 Due
to such features, the spin current generated by this intrinsic
spin Hall effect can be very large(comparable to the ordi-
nary charge currents) and, hence, can serve as an effective
source for efficient injections of spins in nonmagnetic semi-
conductors at room temperature. Very recently, a similar in-
trinsic spin Hall effect was also found by Sinovaet al. in
two-dimensional electron gases(2DEGs) with Rashba spin-
orbit coupling.16 They found that in 2DEGs with Rashba
spin-orbit coupling, the dissipationless and intrinsic spin Hall
conductivity will take a universal value as long as both spin-
orbit split bands are occupied. It is anticipated this effect will
also find some important applications in the emerging field
of spintronics.

Although some basic concepts about the intrinsic spin
Hall effect are clear,8,9,16there are still a number of important
questions which are needed to be further clarified, and in the
last year many theoretical works have been devoted to the
study of this extraordinary effect.17–27 Basically, most of
these theoretical works have been focused on the calculation
of the intrinsic spin Hall conductivity. In the present paper,
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we present a theoretical investigation on the effects of spin
imbalance on the intrinsic spin Hall effect inp-doped semi-
conductors. While it was well known both experimentally
and theoretically that in spin-polarized transport
phenomena28–32 (including in semiconductor spintronics
devices)33–35 spin imbalance may have significant influences
on the transports of spins, what influences spin imbalance
will have on the intrinsic spin Hall effect is still a new sub-
ject and has not yet been explored. For the intrinsic spin Hall
effect, from both the experimental and theoretical points of
view, a clear understanding of the effects of spin imbalance
would be much desirable because spin imbalance may not
only have some significant influences on the electric-field
driven quantum dissipationless spin current and on its prac-
tical applications but also play a crucial role in the experi-
mental measurement of the effect.8 In this paper, based on a
solid microscopic ground, we will derive a set of self-
consistent spin transport equations which will present a
proper description on the interplay between the spin imbal-
ance and the electric-field driven quantum dissipationless
spin current in the intrinsic spin Hall effect inp-doped semi-
conductors. Starting from these spin transport equations and
with the help of appropriate boundary conditions, the quan-
tum dissipationless spin current and the induced nonequilib-
rium spin accumulation in an actual sample with boundaries
can be calculated simultaneously on an equal footing. Our
results show that the characteristics of the interplay between
the quantum dissipationless spin current and the spin imbal-
ance in the intrinsic spin Hall effect inp-doped semiconduc-
tors are very different from what was found in usual spin-
polarized transport phenomena(including in the extrinsic
spin Hall effect), and some usual concepts about the inter-
play between spin current and spin imbalance cannot be ap-
plied to the intrinsic spin Hall effect.

The paper is organized as follows: In Sec. II, we will
present a microscopic derivation of the spin transport equa-
tions for describing the intrinsic spin Hall effect inp-doped
semiconductors. In our derivation, the effects of spin imbal-
ance will be included explicitly. In Sec. III by solving these
spin transport equations with the help of appropriate bound-
ary conditions, the electric-field driven quantum dissipation-
less spin current and the induced nonequilibrium spin accu-
mulation in thin slabs ofp-doped semiconductors will be
calculated explicitly.

II. SPIN TRANSPORT EQUATIONS IN THE PRESENCE
OF SPIN IMBALANCE

In a large class ofp-doped semiconductors such as Si, Ge,
and GaAs, the valence bands are fourfold degenerate at theG
point. In the momentum representation and taking the hole
picture, the valance bands in such semiconductors can be
described by the following Luttinger effective
Hamiltonian:7,8

Ĥ0 =
"2

2m
FSg1 +

5

2
g2Dk2 − 2g2sk ·Sd2G , s1d

whereSi is the spin-3/2 matrix,g1 andg2 are the Luttinger
parameters. For a given wave vectork, the Hamiltonian(1)
has two eigenvalues, given by

eHskd = el=±3/2skd =
g1 − 2g2

2m
"2k2 ;

"2k2

2mH
, s2d

eLskd = el=±1/2skd =
g1 + 2g2

2m
"2k2 ;

"2k2

2mL
, s3d

where l;"−1k ·S/k is a good quantum number of the

HamiltonianĤ0. The hole bands described by Eqs.(2) and
(3) are referred to as the light-hole(LH) and heavy-hole
(HH) bands, respectively. When a uniform electric fieldE is

applied, the full Hamiltonian will be given byĤ=Ĥ0
+eE ·x, where −e is the charge of an electron. The equation
of motion for the light and heavy holes in a uniform electric
field has been derived in much detail in Ref. 8, and in the
semiclassical approximation(i.e., the spin is treated as a clas-
sical variable and hence commutes with the current opera-
tor), the following equation of motion was obtained therein:

k̇i =
eEi

"
, ẋi =

"ki

ml

+ ei jl lS2l2 −
7

2
D kl

k3k̇j , s4d

where ei jl is the usual fully antisymmetric tensor in three
dimensions. The occurrence of the last term in Eq.(4) is
unusual, it represents a “Lorentz force” in momentum space
and is a natural generalization of the quantum Hall effect13–15

to three dimensions.8,9 It is just due to this “Lorentz force” in
momentum space(which makes the hole velocity noncol-
linear with its momentum) that the applied electric field will
drive a quantum dissipationless spin Hall current in the di-
rection perpendicular to the electric field. From Eq.(4), one
can get that in the low temperature limit and in the semiclas-
sical approximation, the net spin current due to both the LH
and HH bands will be given by8

Jj
i =

"

3o
l,k

ẋj
lki

k
nlskd = ss

0ei jkEk, s5d

where Jj
i denotes the net spin current following to thexj

direction with spin parallel to thexi direction, nlskd is the
filling of holes in the band with helicityl, andss

0 is thespin
Hall conductivity, which is given by

ss
0 =

e

12p2s3kH
F − kL

Fd, s6d

with kL
F andkH

F denoting the Fermi wave numbers in the LH
and HH bands, respectively. In obtaining Eqs.(5) and (6),
one has assumed that the fillings of holes in each band can be
described by the simple Fermi-Dirac equilibrium distribution
function. An alternative way of calculating the intrinsic spin
Hall conductivity is by use of the Kubo formula.9,16–18,21,22

Based on the Kubo formula, as was shown in Ref. 9, the full
quantum treatment of the noncommutativity between the
quantum spin and current operator will lead to a quantum
correction to Eq.(6). But if one takes the semiclassical limit,
the result will become the same as was given by Eq.(6).

Equations(5) and(6) are the central results of Refs. 8 and
9. They are valid in the absence of spin imbalance. But in a
real sample with boundaries, when a spin current circulates
in it, spin imbalance will be caused inevitably near the edge
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of the sample by the spin current, and in the presence of spin
imbalance, the spin current may be significantly different
from what was given by Eqs.(5) and (6), especially in the
regions near the edges of the sample. The reason for this is
that in the presence of spin imbalance, the fillings of holes in
the LH and HH bands may deviate significantly from the
corresponding cases in the equilibrium state. In order to take
the effects of spin imbalance properly into account, one
should obtain the distribution function strictly by solving the
Boltzman transport equation, which describes the changes of
the distribution function in a nonequilibrium state. In a non-
equilibrium but steady state, the Boltzman equation reads

ẋ · ¹ flsx,kd + k̇ ·¹k flsx,kd = − o
l8

S ]fl

]t
D

l→l8

scoll.d

, s7d

wheres]fl /]td
l→l8
scoll.d is the collision term due to impurity scat-

terings, andẋ and k̇ are the drift velocities of holes in the
real space and in the momentum space, respectively. Similar
to Ref. 8, in this paper we will confine our discussion to the
semiclassical limit and weak external electric field(i.e., in
the linear response regime) so that the semiclassical equation
of motion given by Eq.(4) can be applied.8,9 The collision
term s]fl /]td

l→l8
scoll.d will be given by

S ]fl

]t
D

l→l8

scoll.d

= −E d3k8

s2pd3wl,l8
sid sk,k8ddfelskd − el8sk8dg

3 fflsx,kd − fl8sx,k8dg, s8d

wherew
l,l8
sid sk ,k8d is the probability of a hole to be scattered

from the stateukll into the stateuk8l8l due to impurity scat-
terings, and the impurity scatterings will be assumed to be
isotropic and spin independent.

In the equilibrium state, the fillings of holes in each band
are stable and can be described by the simple Fermi-Dirac
equilibrium distribution function. When the external electric
field is applied and the system turns into an nonequilibrium
but steady state, the fillings of holes in each band will still be
stable but different from what was described by the simple
Fermi-Dirac equilibrium distribution function. In the pres-
ence of spin imbalance, the changes of the fillings of holes in
the LH and HH bands will be caused primarily by two kinds
of contributions. The first kind of contribution is caused by
the drifts of holes in the external electric field, and the sec-
ond kind of contribution is due to the occurrence of spin
imbalance. In the linear response regime(i.e., in a weak elec-
tric field), the deviations of the fillings of holes in each band
from the corresponding cases in the equilibrium state are
small, and the two kinds of contributions will be independent
and both be proportional to]f0/]eF (here f0=(exphbfelskd
−eFgj+1)−1 is the usual Fermi-Dirac equilibrium distribution
function with b denoting the inverse of temperature andeF
the Fermi level in the equilibrium state). Considering this
fact and by use of the relaxation time approximation, in the
linear response regime the nonequilibrium distribution func-
tion flsx ,kd (in a nonequilibrium but steady state) can be
expressed as the following:

flsx,kd = f0 + mlsxd
]f0

]eF
+ etfElsxd ·Vlg

]f0

]eF
, s9d

whereVl="k /ml is the velocity of holes,t is the total re-
laxation time of holes due to impurity-induced random scat-
terings, andElsxd is the total effective field felt by a moving
hole in the band with helicityl, which is the sum of the
external electric fieldE and a band-dependent effective field
induced by the spin imbalance in the sample. The detailed
definition ofElsxd andt will be given later. The second term
in Eq. (9) just characterizes the deviation of the filling of
holes in the band with helicityl from the corresponding case
in the equilibrium state due to the occurrence of spin imbal-
ance in the sample, and the presence of this term is math-
ematically equivalent to introducing a band-dependent
“shift” ml in the Fermi leveleF. (It should be noted that
unlike the corresponding cases in usual spin-polarized trans-
port phenomena, hereml does not relate directly to the spin
accumulation because the labell does not correspond to a
fixed spin-polarization direction in real space.) The third
term in Eq.(9) denotes the change of the filling due to the
drifts of holes in the external electric field and in the pres-
ence of impurity scatterings. By inserting Eq.(9) into Eq.(7)
and assuming that the impurity scatterings are isotropic, the
Boltzman equation can be simplified to the following form:

Vl ·FE +
1

e
¹ mlsxd + t ¹ fElsxd ·VlgG

= o
l8sÞld

mlsxd − ml8sxd

etll8
+ o

l8

tElsxd ·Vl

tll8
, s10d

wheretll8 is a characteristic relaxation time defined by

tll8 = FE d3k8

s2pd3wl,l8
sid sk,k8ddfelskd − el8sk8dgG−1

,

s11d

which characterizes the probability(given bytll8
−1 ) for a hole

in the band with helicityl to be scattered into the band with
helicity l8 due to impurity scatterings. For simplicity, in the
following we will assume that the intraband-scattering relax-
ation time tll;t1 (independent ofl) and the interband-
scattering relaxation timetll8sÞld;t2 (independent ofl and
l8), and as usual, the total scattering probability for a hole
(given byt−1, i.e., the inverse of the total relaxation time of
a hole) can be given by

t−1 = o
l8

tll8
−1 =

1

t1
+

3

t2
, s12d

which is assumed to be independent of the band labell.
Multiplying both sides of Eq.(10) by Vl and then integrating
both sides with respect toVl and with the help of Eq.(12),
one can find that the total effective field felt by a moving
hole in the band with helicityl should be given by
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Elsxd = E +
1

e
¹ mlsxd. s13d

Equation(13) suggests that in the presence of spin imbal-
ance, in addition to the external electric fieldE, conduction
electrons will also feel an effective field proportional to the
gradient of the band- and position-dependent shift in the
Fermi level. Aftert andElsxd are determined from Eqs.(12)
and (13), the nonequilibrium distribution functionflsx ,kd
will also be determined by Eq.(9). Then in the semiclassical
limit the electric-field driven quantum dissipationless spin
current can be obtained through the following formula:

Jj
i sxd = o

l
E d3k

s2pd3fẋjsi,lskdgflsx,kd, s14d

where ẋj ="kj /ml+e jklls2l2−7/2dklk̇k/k3 [see Eq.(4)] and
si,lskd="slki /kd /3 are the velocity and the spin of a hole
with momentumk and helicity l, respectively.[Since the
spin-3/2 matrixS in the Hamiltonian(1) is a summation of
the spin angular momentums with spin one-half and the
atomic orbital angular momentuml with spin one, the expec-
tation value ofs should be one-third ofS.7,8 By substituting
Eqs.(12) and(13) into Eq.(9) and then inserting Eq.(9) into
Eq. (14), the following result can be obtained:

Jj
i sxd = sssxdei jkEk, s15d

wheresssxd is the spin Hall conductivity in the presence of
spin imbalance, which is given by

sssxd = ss
0 −

e

48p2eF
f3kH

FmHsxd − kL
FmLsxdg. s16d

Heress
0 is the spin Hall conductivity in theabsenceof spin

imbalance, which has been defined in Eq.(6), and mHsxd
;m3/2sxd+m−3/2sxd andmLsxd;m1/2sxd+m−1/2sxd. Equations
(15) and(16) show that the effects of spin imbalance on the
quantum dissipationless spin current due to the intrinsic spin
Hall effect in p-doped semiconductors are very different
from what was found in usual spin-polarized phenomena(in-
cluding the extrinsic spin Hall effect).10–12 First, in the pres-
ence of spin imbalance, the spin Hall conductivity due to the
intrinsic spin Hall effect inp-doped semiconductors might
not be a constant but aposition-dependentquantity. This is a
feature that was not seen before. Second, for the intrinsic
spin Hall effect inp-doped semiconductors, the change of
the quantum dissipationless spin current due to the occur-
rence of spin imbalance is determined directly bymlsxd (i.e.,
the band-dependent “shifts” in the Fermi level) but is inde-
pendent of the gradients ofmlsxd. This is also significantly
different from what was found in usual spin-polarized trans-
ports(including the extrinsic spin Hall effect). These unusual
characteristics of the intrinsic spin Hall effect inp-doped
semiconductors can be understood by the following argu-
ments. According to Eq.(6), the spin Hall conductivity
should be determined uniquely by the Fermi wave numbers
kH

F and kL
F. In the presence of spin imbalance, because the

spin imbalance will induce a position- and band-dependent
shift mlsxd in the Fermi level, the Fermi wave numberskH

F

andkL
F will also be position dependent, and the changes ofkH

F

and kL
F due to the occurrence of spin imbalance will be de-

termined directly bymlsxd. Due to this reason, in the pres-
ence of spin imbalance, the spin Hall conductivity will be a
position-dependent quantity, and the change of the spin Hall
current due to the occurrence of spin imbalance will be de-
termined bymlsxd but independent of the gradients ofmlsxd.
Finally, it should be pointed out that because we have con-
sidered only isotropic and spinless impurity scattering, the
mechanism of the generation of the spin Hall current de-
scribed by Eqs.(15) and(16) is still purely intrinsic, though
there are some significant differences between Eq.(16) and
Eq. (6). In fact, one can check that in the linear response
regime the impurity scattering term(i.e., the third term) in
Eq. (9) does not contribute to the spin Hall conductivity
given by Eq.(16). This point will be more clearly seen from
the results presented in Sec. III. Of course, if the impurity
scatterings are spin-orbit dependent, then the total spin cur-
rent will contain not only the intrinsic part but also contain
an extrinsic part due to the spin-orbit-dependent impurity
scatterings through the mechanism proposed by Hirsch.10–12

In the ordinary charge Hall effect, the charge Hall current
causescharge imbalance in a sample and results in charge
accumulation. Similarly, in the spin Hall effect, the spin im-
balance caused by the spin Hall current will result in non-
equilibrium spin accumulation in a sample. Corresponding to
the quantum spin Hall current given by Eqs.(15) and (16),
the nonequilibrium spin accumulation induced by the quan-
tum spin Hall current can be obtained as the following:

Sisxd = o
l
E d3k

s2pd3si,lskdflsx,kd

= ei jl
El"

2

16eeF
2

]

]xj
fCLmLsxd − 3CHmHsxdg, s17d

whereCL=e2tskL
Fd3/6p2mL andCH=e2tskH

Fd3/6p2mH are the
ordinary charge conductivities of the light holes and the
heavy holes, respectively. Equations(15)–(17) show that in
the intrinsic spin Hall effect inp-doped semiconductors, both
the quantum dissipationless spin current and the spin accu-
mulation will depend sensitively onmlsxd, i.e., the band-
dependent shifts in the Fermi level. To find out the equations
that mlsxd should satisfy, one can substitute Eqs.(12) and
(13) into Eq. (10) and integrate both sides of Eq.(10) with
respect tok, then one will arrive at the following equation:

¹2mlsxd =
1

Dl
2 f4mlsxd − mHsxd − mLsxdg, s18d

whereDl=Vl
FÎt2t /3 is a characteristic hole diffusion length

andVl
F is the band-dependent Fermi velocity. In addition to

Eq. (18), mlsxd should also satisfy the charge neutrality con-
dition, which requires that the net changes of the charge
density due to the flow of the quantum spin current, given by
drc=−eolefsd3kd / s2pd3ghflsx ,kd− f0felskdgj, should be
zero. This leads to the following equation:
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mHsxd = − SmL

mH
D3/2

mLsxd. s19d

Equations(15)–(19) are the central results of the present pa-
per. They constitute a set of self-consistent equations from
which both the quantum dissipationless spin current and the
spin accumulation due to the intrinsic spin Hall effect in a
real sample ofp-doped semiconductors with boundaries can
be obtained simultaneously with the help of appropriate
boundary conditions.

III. INTRINSIC SPIN HALL EFFECT IN THIN SLABS OF
p-DOPED SEMICONDUCTORS

Equations(15)–(19) are rather general and in principle
they can be applied to samples with any kind of geometries.
In the experimental measurement of the Hall effect(includ-
ing the spin Hall effect), a thin slab geometry(i.e., theHall
bar) is usually applied. In this section, starting from Eqs.
(15)–(19), we will present a detailed theoretical investigation
on the intrinsic spin Hall effect in a thin slab ofp-doped
semiconductors. We assume that the longitudinal direction of
the slab is along thez axis and the transverse direction along
the y axis and the normal of the surface along thex axis,
respectively, and an external electric fieldEz is applied in the
longitudinal direction of the slab. The thickness of the slab is
assumed to be much smaller than the hole diffusion length
Dl and the length of the slab is assumed to be much larger
than the width, so that only spin current flowing to they
direction (i.e., in the transverse direction of the slab) with
spin parallel to thex direction need to be considered. The
two boundaries of the slab are assumed to be located aty
= ±w/2, andw is the width of the slab. In general, it is very
difficult to solve Eqs.(15)–(19) analytically. In order to get
some explicit expressions for the spin Hall current and the
spin accumulation, we assume that in Eqs.(15)–(19) the hole
diffusion lengthDl is l independent(i.e., Dl;D) and mL
.mH. Then from Eqs.(18) and (19) one can see that
mHsyd;m3/2syd+m−3/2syd and mLsyd;m1/2syd+m−1/2syd can
be expressed as

mHsyd . − mLsyd = Ae2y/D + Be−2y/D, s20d

whereA andB are two constant coefficients that need to be
determined by the appropriate boundary condition. In this
paper, we will consider the transverse open circuit boundary
condition. In the transverse open circuit boundary condition,
the spin Hall current will be zero at the two boundaries of the
slab, i.e.,Jy

xsy= ±w/2d=0. Substituting Eq.(20) into Eqs.
(15) and(16), the spin Hall currentJy

xsyd can be expressed as
a function of the coefficientsA and B. Then by use of the
transverse open circuit boundary condition, the coefficientsA
andB can be determined, and one can get that

A = B =
2eFs3kH

F − kL
Fd

3kH
F + kL

F

1

coshs2w/Dd
. s21d

After the coefficientsA andB are determined, the spin Hall
currentJy

xsyd and the spin Hall conductivitysssyd will also
be obtained by inserting Eq.(20) into Eqs.(15) and(16), and
the results are given by

Jy
xsyd = sssydEz, s22d

sssyd = ss
0F1 −

coshs2y/Dd
coshsw/Dd G . s23d

Equations(22) and (23) show that, in the presence of spin
imbalance, both the spin Hall current and the spin Hall con-
ductivity might be highly position dependent and might also
depend sensitively on the hole diffusion lengthD and the
width w of the sample. The spin Hall conductivitysssyd will
be maximum at the center of the sample(i.e., at y=0) and
tend to be zero at the edges of the sample. Two limiting cases
will be especially interesting. The first case is that the hole
diffusion lengthD is much larger than the widthw of the
sample. In this limiting case the spin Hall current will be
very small, i.e.,sssyd.0 everywhere. The second interesting
case is thatw@D. In this limiting case, the maximum value
of the spin Hall conductivity will be given bysssyd.ss

0 (at
y=0) andsssyd→0 asy→ ±w/2. These features can be seen
clearly from Fig. 1, where we have plotted the position de-
pendence of the spin Hall conductivitysssyd in three cases
with different ratios ofw/D. From Fig. 1 and Eq.(23), one
can see clearly that if no boundaries exist(i.e., w→` and,
hence, no spin imbalance occurs), the spin Hall conductivity
will be a constant and return to the same result as was given
by Eq. (6), i.e., the spin Hall conductivity will not be
changed by weak isotropic and spinless impurity scatterings.
This is in agreement with Ref. 8 and also in agreement with
the result obtained by a more accurate calculation performed
in Ref. 20. It is interesting to note that recently a similar
conclusion was also obtained for the intrinsic spin Hall effect
in 2DEGs with Rashba spin-orbit coupling by both numeri-

FIG. 1. Illustration of the position dependences of the spin Hall
conductivity sssyd in three cases with different ratios ofw/D.
[w/D=50 for the solid line,w/D=10 for the dashed line, and
w/D=1 for the dotted line.sssyd is normalized byss

0, i.e., the spin
Hall conductivity in the absence of spin imbalance.]
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cal simulations24 and analytical calculations,26,27 which sug-
gest that in the presence of weak(isotropic and spinless)
impurity scatterings, the intrinsic spin Hall conductivity in a
Rashba two-dimensional electron gas should still take a uni-
versal value, proving that the sample size exceeds the local-
ization length.24,26,27Of course, it should be pointed out that
at present different views also exist on this problem. For
example, in Ref. 25 it was argued that the spin-orbit-
coupling induced intrinsic spin Hall current in a Rashba two-
dimensional electron gas should vanish in the presence of
impurity scatterings, even if the impurity scatterings are
weak and spinless.

The quantum dissipationless spin current generated by the
intrinsic spin Hall effect does not carry charges(i.e., it is a
purespin current), so it is very difficult to measure the quan-
tum dissipationless spin current directly. An indirect but
much more convenient way to detect the quantum dissipa-
tionless spin current is to measure the nonequilibrium spin
accumulation induced by the quantum dissipationless spin
current. The nonequilibrium spin accumulation induced by
the quantum dissipationless spin Hall current in a thin slab of
p-doped semiconductors can be got by inserting Eqs.(20)
and (21) into Eq. (17), and the following result can be ob-
tained:

Sxsyd =
3p2"2ss

0EzsCL + 3CHdsinhs2y/Dd
e2eFskL

F + 3kH
FdD coshsw/Dd

. s24d

Equation(24) shows that the spin accumulation will be lin-
early proportional to the spin Hall conductivityss

0 and also
depend sensitively on the ordinary charge conductivitiesCL
andCH of the light and heavy holes. It also have a sensitive
dependence on the hole diffusion lengthD and the sample
width w. According to Eq.(24), for a infinitely large sample
without boundaries(i.e., w→`), no spin accumulation will
appear[i.e., Sxsyd=0 for any finitey]. This is different from
what was found in a Rashba two-dimensional electron gas,
where it was found that the application of an in-plane electric
field would induce a homogeneous nonequilibrium spin ac-
cumulation without resort to the boundary effects.36–38From
Eq. (24), one can see that for an actual sample with bound-
aries, the spatial distribution of the spin accumulation due to
the intrinsic spin Hall effect would be highly inhomoge-
neous. The spin accumulation will be maximum at the edges
of the sample and vanish near the center of the slab, and the
spin accumulation at the edges of the sample will increase
with the increase of the sample widthw. This has been illus-
trated in Fig. 2. From Fig. 2 one can see that if the sample
width w is much smaller than the hole diffusion lengthD, the
spin accumulation induced by the quantum spin Hall current
will be very small. On the other hand, if the sample widthw
is much larger than the hole diffusion lengthD, the spin
accumulation at the edges of the sample will be almost a
constant, independent of the sample width. This will be a
merit for the experimental measurement of the intrinsic spin
Hall effect. To obtain a quantitative estimation on the order
of the magnitude of the spin accumulation induced by the
quantum dissipationless spin Hall current in a real sample,
let us consider some actual experimental parameters. We take

the ordinary conductivityCL,H,102 V−1 cm−1 and the hole
diffusion lengthD,10 nm and" /eF,1 fs. These param-
eters are typical of the holes in GaAs with the hole density
n,1019 cm−3. The widthw of the sample is assumed to be
100 nm (much larger than the hole diffusion length) and a
current densityjx,104 A/cm2. By use of the parameters
listed earlier, from Eq.(24) it can be estimated that the spin
accumulation at the edges of the sample will be on the order
of 1013–1015mB cm−2. Such magnitudes should be large
enough to be measured by some ordinary experimental meth-
ods, for example, by the method proposed in Refs. 8–11.
Finally, it should be pointed out that a rough estimation of
the spin accumulation due to the quantum dissipationless
spin Hall current was also presented in the supporting online
material for Ref. 8 based on a simple analysis by use of the
usual spin diffusion equation, but there are some significant
differences between the results obtained in the present paper
and the corresponding results reported therein. This can be
seen by making a comparison between Eq.(24) obtained in
the present paper and Eq.(S16) presented in the supporting
online material for Ref. 8. For example, according to Eq.
(24) obtained in the present paper, the spin accumulation will
not only depend on the spin Hall conductivity but also de-
pend sensitively on the ordinary charge conductivities of the
light and heavy holes; however, according to Eq.(S16) in the
supporting online material for Ref. 8, the spin accumulation
will only depend on the spin Hall conductivity but is inde-
pendent of the ordinary charge conductivities of the light and
heavy holes. Our results show that though the mechanism of
the intrinsic spin Hall effect is purely intrinsic, impurity scat-
terings might have some significant influences on the effect
in a real sample with boundaries, and the usual spin diffusion
equation might not be very suitable for describing this effect.
In fact, from the microscopic calculation presented in Sec. II,

FIG. 2. Illustration of the changes of the spin accumulation at
the edges of a sample with the variation of the sample width.{The
spin accumulation is normalized byS0=f3p2"2ss

0EzsCL

+3CHd /e2eFDskL
F+3kH

Fdg}.
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one can see that in general the quantum dissipationless spin
Hall current[given by Eqs.(15) and (16)] and the spin ac-
cumulation[given by Eq.(17)] due to the intrinsic spin Hall
effect do not satisfy the usual spin diffusion equation.

In conclusion, in this paper we have presented a detailed
theoretical investigation on the effects of spin imbalance on
the intrinsic spin Hall effect inp-doped semiconductors. We
have shown that in a real sample with boundaries, the spin
Hall conductivity might not be a constant but a sensitively
position-dependent quantity due to the occurrence of spin
imbalance near the edges of the sample, and in order to take
the effects of spin imbalance properly into account, a micro-
scopic calculation of both the quantum dissipationless spin
current and the spin accumulation based on an equal footing
is thus required. We stress that some usual concepts about the
interplay between spin current and spin imbalance might not
be suitable for describing the intrinsic spin Hall effect. After
some modifications, the theory presented in this paper might
also be applied to investigate the effects of spin imbalance in
the intrinsic spin Hall effect in 2DEGs with Rashba spin-
orbit coupling. Finally, it should be pointed out that though
in the last year many theoretical works have been devoted to
the study of the intrinsic spin Hall effect, many controversial

issues still exist concerning some fundamental aspects of this
extraordinary effect. Among them, a big controversial issue
is that what is the correct definition of spin current in mate-
rials with intrinsic spin-orbit coupling.9,16,19,21As was argued
in Ref. 9 and in Ref. 19, there are some difficulties with the
conventional definition of spin current in spin-orbit-coupled
systems, but it seemed that up to now there are still no unani-
mous views about this question.9,16–19,21,23(In the present
paper we have used the same definition of Ref. 8.) Because
no unambiguous experimental detections have ever been
done, on the present stage such controversial issues are dif-
ficult to be clarified unambiguously by pure theoretical argu-
ments. But it could be anticipated that by combining future
experimental results with more accurate theoretical investi-
gations, these controversial issues should be able to be clari-
fied unambiguously in the near future.
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