research

Effects of spin imbalance on the electric-field driven quantum dissipationless spin current in pp-doped Semiconductors

Abstract

It was proposed recently by Murakami et al. [Science \textbf{301}, 1348(2003)] that in a large class of pp-doped semiconductors, an applied electric field can drive a quantum dissipationless spin current in the direction perpendicular to the electric field. In this paper we investigate the effects of spin imbalance on this intrinsic spinspin Hall effect. We show that in a real sample with boundaries, due to the presence of spin imbalance near the edges of the sample, the spin Hall conductivity is not a constant but a sensitively positionposition-dependentdependent quantity, and due to this fact, in order to take the effects of spin imbalance properly into account, a microscopic calculation of both the quantum dissipationless spin Hall current and the spin accumulation on an equal footing is thus required. Based on such a microscopic calculation, a detailed discussion of the effects of spin imbalance on the intrinsic spin Hall effect in thin slabs of pp-doped semiconductors are presented.Comment: 8 pages, 2 figures, An extended version with detailed calculations To appear in Phys. Rev.

    Similar works