142 research outputs found

    Circadian Behavioral Responses to Light and Optic Chiasm-Evoked Glutamatergic EPSCs in the Suprachiasmatic Nucleus of ipRGC Conditional vGlut2 Knock-Out Mice

    Get PDF
    Intrinsically photosensitive retinal ganglion cells (ipRGCs) innervate the hypothalamic suprachiasmatic nucleus (SCN), a circadian oscillator that functions as a biological clock. ipRGCs use vesicular glutamate transporter 2 (vGlut2) to package glutamate into synaptic vesicles and light-evoked resetting of the SCN circadian clock is widely attributed to ipRGC glutamatergic neurotransmission. Pituitary adenylate cyclase-activating polypeptide (PACAP) is also packaged into vesicles in ipRGCs and PACAP may be coreleased with glutamate in the SCN. vGlut2 has been conditionally deleted in ipRGCs in mice [conditional knock-outs (cKOs)] and their aberrant photoentrainment and residual attenuated light responses have been ascribed to ipRGC PACAP release. However, there is no direct evidence that all ipRGC glutamatergic neurotransmission is eliminated in vGlut2 cKOs. Here, we examined two lines of ipRGC vGlut2 cKO mice for SCN-mediated behavioral responses under several lighting conditions and for ipRGC glutamatergic neurotransmission in the SCN. Circadian behavioral responses varied from a very limited response to light to near normal photoentrainment. After collecting behavioral data, hypothalamic slices were prepared and evoked EPSCs (eEPSCs) were recorded from SCN neurons by stimulating the optic chiasm. In cKOs, glutamatergic eEPSCs were recorded and all eEPSC parameters examined (stimulus threshold, amplitude, rise time or time-to-peak and stimulus strength to evoke a maximal response) were similar to controls. We conclude that a variable number but functionally significant percentage of ipRGCs in two vGlut2 cKO mouse lines continue to release glutamate. Thus, the residual SCN-mediated light responses in these cKO mouse lines cannot be attributed solely to ipRGC PACAP release

    Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons

    Get PDF
    Retinal dopaminergic amacrine neurons (DA neurons) play a central role in reconfiguring retinal function according to prevailing illumination conditions, yet the mechanisms by which light regulates their activity are poorly understood. We investigated the means by which sustained light responses are evoked in DA neurons. Sustained light responses were driven by cationic currents and persisted in vitro and in vivo in the presence of L-AP4, a blocker of retinal ON-bipolar cells. Several characteristics of these L-AP4-resistant light responses suggested that they were driven by melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs), including long latencies, marked poststimulus persistence, and a peak spectral sensitivity of 478 nm. Furthermore, sustained DA neuron light responses, but not transient DA neuron responses, persisted in rod/cone degenerate retinas, in which ipRGCs account for virtually all remaining retinal phototransduction. Thus, ganglion-cell photoreceptors provide excitatory drive to DA neurons, most likely by way of the coramification of their dendrites and the processes of DA neurons in the inner plexiform layer. This unprecedented centrifugal outflow of ganglion-cell signals within the retina provides a novel basis for the restructuring of retinal circuits by light

    Temperature dependence, accuracy, and repeatability of T-1 and T-2 relaxation times for the ISMRM/NIST system phantom measured using MR fingerprinting

    Get PDF
    Purpose Before MR fingerprinting (MRF) can be adopted clinically, the derived quantitative values must be proven accurate and repeatable over a range of T1 and T2 values and temperatures. Correct assessment of accuracy and precision as well as comparison between measurements can only be performed when temperature is either controlled or corrected for. The purpose of this study was to investigate the temperature dependence of T1 and T2 MRF values and evaluate the accuracy and repeatability of temperature-corrected relaxation values derived from a B1-corrected MRF–fast imaging with steady-state precession implementation using 2 different dictionary sizes. Methods The International Society of MR in Medicine/National Institute of Standards and Technology phantom was scanned using an MRF sequence of 2 different lengths, a variable flip angle T1, and a multi-echo spin echo T2 at 14 temperatures ranging from 15°C to 28°C and investigated with a linear regression model. Temperature-corrected accuracy was evaluated by correlating T1 and T2 times from each MRF dictionary with reference values. Repeatability was assessed using the coefficient of variation, with measurements taken over 30 separate sessions. Results There was a statistically significant fit of the model for MRF-derived T1 and T2 and temperature (p 500 ms. Both MRF methods showed a strong linear correlation with reference values for T1 (R2 = 0.996) and T2 (R2 = 0.982). MRF repeatability for T1 values was ≤1.4% and for T2 values was ≤3.4%. Conclusion MRF demonstrated relaxation times with a temperature dependence similar to that of conventional mapping methods. Temperature-corrected T1 and T2 values from both dictionaries showed adequate accuracy and excellent repeatability in this phantom study

    Hsp90 depletion goes wild

    Get PDF
    Hsp90 reveals phenotypic variation in the laboratory, but is Hsp90 depletion important in the wild? Recent work from Chen and Wagner in BMC Evolutionary Biology has discovered a naturally occurring Drosophila allele that downregulates Hsp90, creating sensitivity to cryptic genetic variation. Laboratory studies suggest that the exact magnitude of Hsp90 downregulation is important. Extreme Hsp90 depletion might reactivate transposable elements and/or induce aneuploidy, in addition to revealing cryptic genetic variation

    Effect of Chorda Tympani Nerve Transection on Salt Taste Perception in Mice

    Get PDF
    Effects of gustatory nerve transection on salt taste have been studied extensively in rats and hamsters but have not been well explored in the mouse. We examined the effects of chorda tympani (CT) nerve transection on NaCl taste preferences and thresholds in outbred CD-1 mice using a high-throughput phenotyping method developed in our laboratory. To measure taste thresholds, mice were conditioned by oral self-administration of LiCl or NaCl and then presented with NaCl concentration series in 2-bottle preference tests. LiCl-conditioned and control NaCl-exposed mice were given bilateral transections of the CT nerve (LiCl-CTX, NaCl-CTX) or were left intact as controls (LiCl-CNT, NaCl-CNT). After recovery from surgery, mice received a concentration series of NaCl (0–300 mM) in 48-h 2-bottle tests. CT transection increased NaCl taste thresholds in LiCl-conditioned mice and eliminated avoidance of concentrated NaCl in control NaCl-exposed mice. This demonstrates that in mice, the CT nerve is important for detection and recognition of NaCl taste and is necessary for the normal avoidance of high concentrations of NaCl. The results of this experiment also show that the method of high-throughput phenotyping of salt taste thresholds is suitable for detecting changes in the taste periphery in mouse genetic studies

    Steps on the Path to Clinical Translation: A workshop by the British and Irish Chapter of the ISMRM

    Get PDF
    The British and Irish Chapter of the International Society for Magnetic Resonance in Medicine (BIC-ISMRM) held a workshop entitled "Steps on the path to clinical translation" in Cardiff, UK, on 7th September 2022. The aim of the workshop was to promote discussion within the MR community about the problems and potential solutions for translating quantitative MR (qMR) imaging and spectroscopic biomarkers into clinical application and drug studies. Invited speakers presented the perspectives of radiologists, radiographers, clinical physicists, vendors, imaging Contract/Clinical Research Organizations (CROs), open science networks, metrologists, imaging networks, and those developing consensus methods. A round-table discussion was held in which workshop participants discussed a range of questions pertinent to clinical translation of qMR imaging and spectroscopic biomarkers. Each group summarized their findings via three main conclusions and three further questions. These questions were used as the basis of an online survey of the broader UK MR community

    Steps on the Path to Clinical Translation: A workshop by the British and Irish Chapter of the ISMRM

    Get PDF
    The British and Irish Chapter of the International Society for Magnetic Resonance in Medicine (BIC‐ISMRM) held a workshop entitled “Steps on the path to clinical translation” in Cardiff, UK, on 7th September 2022. The aim of the workshop was to promote discussion within the MR community about the problems and potential solutions for translating quantitative MR (qMR) imaging and spectroscopic biomarkers into clinical application and drug studies. Invited speakers presented the perspectives of radiologists, radiographers, clinical physicists, vendors, imaging Contract/Clinical Research Organizations (CROs), open science networks, metrologists, imaging networks, and those developing consensus methods. A round‐table discussion was held in which workshop participants discussed a range of questions pertinent to clinical translation of qMR imaging and spectroscopic biomarkers. Each group summarized their findings via three main conclusions and three further questions. These questions were used as the basis of an online survey of the broader UK MR community

    Serotonin and corticosterone rhythms in mice exposed to cigarette smoke and in patients with COPD:implication for COPD-associated neuropathogenesis

    Get PDF
    The circadian timing system controls daily rhythms of physiology and behavior, and disruption of clock function can trigger stressful life events. Daily exposure to cigarette smoke (CS) can lead to alteration in diverse biological and physiological processes. Smoking is associated with mood disorders, including depression and anxiety. Patients with chronic obstructive pulmonary disease (COPD) have abnormal circadian rhythms, reflected by daily changes in respiratory symptoms and lung function. Corticosterone (CORT) is an adrenal steroid that plays a considerable role in stress and anti-inflammatory responses. Serotonin (5-hydroxytryptamine; 5HT) is a neurohormone, which plays a role in sleep/wake regulation and affective disorders. Secretion of stress hormones (CORT and 5HT) is under the control of the circadian clock in the suprachiasmatic nucleus. Since smoking is a contributing factor in the development of COPD, we hypothesize that CS can affect circadian rhythms of CORT and 5HT secretion leading to sleep and mood disorders in smokers and patients with COPD. We measured the daily rhythms of plasma CORT and 5HT in mice following acute (3 d), sub-chronic (10 d) or chronic (6 mo) CS exposure and in plasma from non-smokers, smokers and patients with COPD. Acute and chronic CS exposure affected both the timing (peak phase) and amplitude of the daily rhythm of plasma CORT and 5HT in mice. Acute CS appeared to have subtle time-dependent effects on CORT levels but more pronounced effects on 5HT. As compared with CORT, plasma 5HT was slightly elevated in smokers but was reduced in patients with COPD. Thus, the effects of CS on plasma 5HT were consistent between mice and patients with COPD. Together, these data reveal a significant impact of CS exposure on rhythms of stress hormone secretion and subsequent detrimental effects on cognitive function, depression-like behavior, mood/anxiety and sleep quality in smokers and patients with COPD

    Advanced MR techniques for preoperative glioma characterization: Part 1

    Get PDF
    Preoperative clinical magnetic resonance imaging (MRI) protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation or lack thereof. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this first part, we discuss dynamic susceptibility contrast and dynamic contrast-enhanced MRI, arterial spin labeling, diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting. The second part of this review addresses magnetic resonance spectroscopy, chemical exchange saturation transfer, susceptibility-weighted imaging, MRI-PET, MR elastography, and MR-based radiomics applications. Evidence Level: 3 Technical Efficacy: Stage 2

    Gene expression in cardiac tissues from infants with idiopathic conotruncal defects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tetralogy of Fallot (TOF) is the most commonly observed conotruncal congenital heart defect. Treatment of these patients has evolved dramatically in the last few decades, yet a genetic explanation is lacking for the failure of cardiac development for the majority of children with TOF. Our goal was to perform genome wide analyses and characterize expression patterns in cardiovascular tissue (right ventricle, pulmonary valve and pulmonary artery) obtained at the time of reconstructive surgery from 19 children with tetralogy of Fallot.</p> <p>Methods</p> <p>We employed genome wide gene expression microarrays to characterize cardiovascular tissue (right ventricle, pulmonary valve and pulmonary artery) obtained at the time of reconstructive surgery from 19 children with TOF (16 idiopathic and three with 22q11.2 deletions) and compared gene expression patterns to normally developing subjects.</p> <p>Results</p> <p>We detected a signal from approximately 26,000 probes reflecting expression from about half of all genes, ranging from 35% to 49% of array probes in the three tissues. More than 1,000 genes had a 2-fold change in expression in the right ventricle (RV) of children with TOF as compared to the RV from matched control infants. Most of these genes were involved in compensatory functions (e.g., hypertrophy, cardiac fibrosis and cardiac dilation). However, two canonical pathways involved in spatial and temporal cell differentiation (WNT, <it>p </it>= 0.017 and Notch, <it>p </it>= 0.003) appeared to be generally suppressed.</p> <p>Conclusions</p> <p>The suppression of developmental networks may represent a remnant of a broad malfunction of regulatory pathways leading to inaccurate boundary formation and improper structural development in the embryonic heart. We suggest that small tissue specific genomic and/or epigenetic fluctuations could be cumulative, leading to regulatory network disruption and failure of proper cardiac development.</p
    corecore