95 research outputs found

    Thermo-alkali-stable catalases from newly isolated Bacillus sp. for the treatment and recycling of textile bleaching effluents

    Get PDF
    Three thermoalkaliphilic bacteria, which were grown at pH 9.3–10 and 60–65 °C were isolated out of a textile wastewater drain. The unknown micro-organisms were identified as thermoalkaliphilic Bacillus sp. Growth nditions were studied and catalase activities and stabilities compared. Catalases from Bacillus SF showed high stabilities at 60 °C and pH 9 (t1/2=38 h) and thus this strain was chosen for further investigations, such as electron microscopy, immobilization of catalase and hydrogen peroxide degradation studies. Degradation of hydrogen peroxide with an immobilized catalase from Bacillus SF enabled the reuse of the water for the dyeing process. In contrast, application of the free enzyme for treatment of bleaching effluents, caused interaction between the denaturated protein and the dye, resulting in reduced dye uptake, and a higher color difference of 1.3 ΔE* of dyed fabrics compared to 0.9 ΔE* when using the immobilized enzyme

    Quenched phosphorescence as alternative detection mode in the chiral separation of methotrexate by electrokinetic chromatography

    Get PDF
    Quenched phosphorescence was used, for the first time, as detection mode in the chiral separation of methotrexate (MTX) enantiomers by electrokinetic chromatography. The detection is based on dynamic quenching of the strong emission of the phosphorophore 1-bromo-4-naphthalene sulfonic acid (BrNS) by MTX under deoxygenated conditions. The use of a background electrolyte with 3 mg/mL 2-hydroxypropyl-β-cyclodextrin and 20% MeOH in 25 mM phosphate buffer (pH 7.0) and an applied voltage of 30 kV allowed the separation of l-MTX and its enantiomeric impurity d-MTX with sufficient resolution. In the presence of 1 mM BrNS, a detection limit of 3.2 × 10−7 M was achieved, about an order of magnitude better than published techniques based on UV absorption. The potential of the method was demonstrated with a degradation study and an enantiomeric purity assessment of l-MTX. Furthermore, l-MTX was determined in a cell culture extract as a proof-of-principle experiment to show the applicability of the method to biological samples

    Leaching as a pretreatment process to complement torrefaction in improving co-firing characteristics of Jatropha curcas seed cake

    Get PDF
    The presence of certain inorganic elements in biomass causes issues such as slagging, fouling and corrosion when co-firing with coal for power generation. In this work, the efficacy of leaching to remove these elements from Jatropha curcas seed cake was investigated. Leaching of both untorrefied and torrefied seed cakes was carried out in Milli-Q water at temperatures of 20, 35 and 50 °C. At 20 °C, the two critical elements, potassium and chlorine, decreased by as much as 85 and 97 %, respectively. Leaching at higher temperatures was only beneficial for the more intensely torrefied biomass, since they were more resistant to leaching. The electrical conductivity and ion content of the leachates were measured, as were the inorganic elemental content, dry ash content, volatile matter content and higher heating value (HHV) of the solid seed cake. A secondary benefit of the leaching was an increase in the HHV by up to 10 %

    Restricting detergent protease action to surface of protein fibres by chemical modification

    Get PDF
    Due to their excellent properties, such as thermostability, activity over a broad range of pH and efficient stain removal, proteases from Bacillus sp. are commonly used in the textile industry including industrial processes and laundry and represent one of the most important groups of enzymes. However, due to the action of proteases, severe damage on natural protein fibres such as silk and wool result after washing with detergents containing proteases. To include the benefits of proteases in a wool fibre friendly detergent formulation, the soluble polymer polyethylene glycol (PEG) was covalently attached to a protease from Bacillus licheniformis. In contrast to activation of PEG with cyanuric chloride (50%) activation with 1,1′-carbonyldiimidazole (CDI) lead to activity recovery above 90%. With these modified enzymes, hydrolytic attack on wool fibres could be successfully prevented up to 95% compared to the native enzymes. Colour difference (ΔE) measured in the three dimensional colour space showed good stain removal properties for the modified enzymes. Furthermore, half-life of the modified enzymes in buffers and commercial detergents solutions was nearly twice as high as those of the non-modified enzymes with values of up to 63 min. Out of the different modified proteases especially the B. licheniformis protease with the 2.0-kDa polymer attached both retained stain removal properties and did not hydrolyse/damage wool fibres

    Direct enzymatic esterification of cotton and Avicel with wild-type and engineered cutinases

    Get PDF
    In this work, the surface of cellulose, either Avicel or cotton fabric, was modified using cutinases without any previous treatment to swell or to solubilise the polymer. Aiming further improvement of cutinase ester synthase activity on cellulose, an engineered cutinase was investigated. Wild-type cutinase from Fusarium solani and its fusion with the carbohydrate-binding module N1 from Cellulomonas fimi were able to esterify the hydroxyl groups of cellulose with distinct efficiencies depending on the acid substrate/solvent system used, as shown by titration and by ATR-FTIR. The carbonyl stretching peak area increased significantly after enzymatic treatment during 72 h at 30 °C. Cutinase treatment resulted in relative increases of 31 and 9 % when octanoic acid and vegetable oil were used as substrates, respectively. Cutinase-N1 treatment resulted in relative increases of 11 and 29 % in the peak area when octanoic acid and vegetable oil were used as substrates, respectively. The production and application of cutinase fused with the domain N1 as a cellulose ester synthase, here reported for the first time, is therefore an interesting strategy to pursuit.This work was co-funded by the European Social Fund through the management authority POPH and FCT, Postdoctoral fellowship reference: SFRH/BPD/47555/2008. The authors also want to thank Doctor Raul Machado for his valuable help on FTIR spectral data treatment

    Reversed phase-HPLC von Aminosäuren als Kupfer-Chelate

    No full text

    Lipases in polymer chemistry

    No full text
    Lipases are highly active in the polymerization of a range of monomers. Both ring-opening polymerization of cyclic monomers such as lactones and carbonates as well as polycondensation reactions have been investigated in great detail. Moreover, in combination with other (chemical) polymerization techniques, lipase-catalyzed polymerization has been employed to synthesize a variety of polymer materials. Major advantages of enzymatic catalysts are the often-observed excellent regio-, chemo- and enantioselectivity that allows for the direct preparation of functional materials. In particular, the application of techniques such as Dynamic Kinetic Resolution (DKR) in the lipase-catalyzed polymerization of racemic monomers is a new development in enzymatic polymerization. This paper reviews selected examples of the application of lipases in polymer chemistry covering the synthesis of linear polymers, chemoenzymatic polymerization and applications of enantioselective techniques for the synthesis and modification of polymers

    Nitrile Hydratase and Amidase from Rhodococcus rhodochrous Hydrolyze Acrylic Fibers and Granular Polyacrylonitriles

    Get PDF
    Rhodococcus rhodochrous NCIMB 11216 produced nitrile hydratase (320 nkat mg of protein(−1)) and amidase activity (38.4 nkat mg of protein(−1)) when grown on a medium containing propionitrile. These enzymes were able to hydrolyze nitrile groups of both granular polyacrylonitriles (PAN) and acrylic fibers. Nitrile groups of PAN40 (molecular mass, 40 kDa) and PAN190 (molecular mass, 190 kDa) were converted into the corresponding carbonic acids to 1.8 and 1.0%, respectively. In contrast, surfacial nitrile groups of acrylic fibers were only converted to the corresponding amides. X-ray photoelectron spectroscopy analysis showed that 16% of the surfacial nitrile groups were hydrolyzed by the R. rhodochrous enzymes. Due to the enzymatic modification, the acrylic fibers became more hydrophilic and thus, adsorption of dyes was enhanced. This was indicated by a 15% increase in the staining level (K/S value) for C.I. Basic Blue 9
    • …
    corecore