526 research outputs found
Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents
The effect of the introduction of specific adsorbents on the gas separation properties of polymeric membranes has been studied. For this purpose both carbon molecular sieves and zeolites are considered. The results show that zeolites such as silicate-1, 13X and KY improve to a large extent the separation properties of poorly selective rubbery polymers towards a mixture of carbon dioxide/methane. Some of the filled rubbery polymers achieve intrinsic separation properties comparable to cellulose acetate, polysulfone or polyethersulfone. However, zeolite 5A leads to a decrease in permeability and an unchanged selectivity. This is due to the impermeable character of these particles, i.e. carbon dioxide molecules cannot diffuse through the porous structure under the conditions applied. Using silicate-1 also results in an improvement of the oxygen/nitrogen separation properties which is mainly due to a kinetic effect. Carbon molecular sieves do not improve the separation performances or only to a very small extent. This is caused by a mainly dead-end (not interconnected) porous structure which is inherent to their manufacturing process
Preparation of zeolite filled glassy polymer membranes
The incorporation of zeolite particles in the micrometer range into polymeric matrices was investigated as a way to improve the gas separation properties of the polymer materials used in the form of membranes. The adhesion between the polymer phase and the external surface of the particles appeared to be a major problem in the preparation of such membranes when the polymer is in the glassy state at room temperature. Various methods were investigated to improve the internal membrane structure, that is, surface modification of the zeolite external surface, preparation above the glass-transition temperature, and heat treatment. Improved structures were obtained as observed by scanning electron microscopy, but the influence on the gas separation properties was not in agreement with the observed structural improvements
Recommended from our members
Impact of Mn-Pn intermixing on magnetic properties of an intrinsic magnetic topological insulator: the µSR perspective
We investigated the magnetic properties of polycrystalline samples of the intrinsic magnetic topological insulators MnPn2Te4, with pnictogen Pn = Sb, Bi, by bulk magnetization and μSR. DC susceptibility detects the onset of magnetic ordering at TN = 27 K and 24 K and a field dependence of the macroscopic magnetization compatible with ferri- (or ferro-) and atiferro- magnetic ordering, respectively. Weak transverse field (wTF) Muon Spin Rotation (μSR) confirms the homogeneous bulk nature of magnetic ordering at the same two distinct transition temperatures. Zero Field (ZF) μSR shows that the Sb based material displays a broader distribution of internal field at the muon, in accordance with a larger deviation from the stoichiomectric composition and a higher degree of positional disorder (Mn at the Pn(6c) site), which however does not affect significantly the sharpness of the thermodynamic transition, as detected by the muon magnetic volume fraction and the observability of a critical divergence in the longitudinal and transverse muon relaxation rates
Field-effect transistors assembled from functionalized carbon nanotubes
We have fabricated field effect transistors from carbon nanotubes using a
novel selective placement scheme. We use carbon nanotubes that are covalently
bound to molecules containing hydroxamic acid functionality. The functionalized
nanotubes bind strongly to basic metal oxide surfaces, but not to silicon
dioxide. Upon annealing, the functionalization is removed, restoring the
electronic properties of the nanotubes. The devices we have fabricated show
excellent electrical characteristics.Comment: 5 pages, 6 figure
The Radish Gene Reveals a Memory Component with Variable Temporal Properties
Memory phases, dependent on different neural and molecular mechanisms, strongly influence memory performance. Our understanding, however, of how memory phases interact is far from complete. In Drosophila, aversive olfactory learning is thought to progress from short-term through long-term memory phases. Another memory phase termed anesthesia resistant memory, dependent on the radish gene, influences memory hours after aversive olfactory learning. How does the radish-dependent phase influence memory performance in different tasks? It is found that the radish memory component does not scale with the stability of several memory traces, indicating a specific recruitment of this component to influence different memories, even within minutes of learning
Studies on the genetic and non-genetic (physiological) variation of human erythrocyte glutamic oxaloacetic transaminase
The thermostability profile of seven different electrophoretic variants of human erythrocyte GOT found in 13 different, unrelated families from a racially heterogeneous population was examined. The five different slow-variant and the two different fast-variant classes could be grouped into four different thermostability classes which were termed unstable, less stable, normal and more stable than normal. The thermostability differences among and within the electrophoretic variant classes permitted differentiation of the 13 individusals possessing an electrophoretic variant phenotype into a total of ten different variants.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66025/1/j.1469-1809.1982.tb00711.x.pd
Fiscal Discrimination between Consumer Groups: Tax Burden Distribution Under Price Discrimination
In this paper it is analysed, how, under price discrimination, the tax burden is shared between the distinct consumer groups. Unit and ad valorem taxes are compared, revealing an impossibility of fiscal discrimination with regard to price changes. Contrary to conventional tax incidence analysis, it is shown that quantities traded do matter. Relative market shares are decisive for the distribution of tax burdens thereby opening up an opportunity for fiscal discrimination in choosing tax types. This discriminatory potential is limited and not caused by price discrimination per se but rather due to monopolistic supply
- …