23 research outputs found

    In-situ upgrading of Napier grass pyrolysis vapour over microporous and hierarchical mesoporous zeolites

    Get PDF
    This study presents in-situ upgrading of pyrolysis vapour derived from Napier grass over microporous and mesoporous ZSM-5 catalysts. It evaluates effect of process variables such catalyst–biomass ratio and catalyst type in a vertical fixed bed pyrolysis system at 600 °C, 50 °C/min under 5 L/min nitrogen flow. Increasing catalyst–biomass ratio during the catalytic process with microporous structure reduced production of organic phase bio-oil by approximately 7.0 wt%. Using mesoporous catalyst promoted nearly 4.0 wt% higher organic yield relative to microporous catalyst, which translate to only about 3.0 wt% reduction in organic phase compared to the yield of organic phase from non-catalytic process. GC–MS analysis of bio-oil organic phase revealed maximum degree of deoxygenation of about 36.9% with microporous catalyst compared to the mesoporous catalysts, which had between 39 and 43%. Mesoporous catalysts promoted production olefins and alkanes, normal phenol, monoaromatic hydrocarbons while microporous catalyst favoured the production of alkenes and polyaromatic hydrocarbons. There was no significant increase in the production of normal phenols over microporous catalyst due to its inability to transform the methoxyphenols and methoxy aromatics. This study demonstrated that upgrading of Napier grass pyrolysis vapour over mesoporous ZSM-5 produced bio-oil with improved physicochemical properties

    Hydrogen and Carbon Nanotubes from Pyrolysis-Catalysis of Waste Plastics: A Review

    Get PDF
    More than 27 million tonnes of waste plastics are generated in Europe each year representing a considerable potential resource. There has been extensive research into the production of liquid fuels and aromatic chemicals from pyrolysis-catalysis of waste plastics. However, there is less work on the production of hydrogen from waste plastics via pyrolysis coupled with catalytic steam reforming. In this paper, the different reactor designs used for hydrogen production from waste plastics are considered and the influence of different catalysts and process parameters on the yield of hydrogen from different types of waste plastics are reviewed. Waste plastics have also been investigated as a source of hydrocarbons for the generation of carbon nanotubes via the chemical vapour deposition route. The influences on the yield and quality of carbon nanotubes derived from waste plastics are reviewed in relation to the reactor designs used for production, catalyst type used for carbon nanotube growth and the influence of operational parameters

    Tra Luzi e Montale: botta e risposta

    No full text
    Luzi e Montale corrisposero tra loro in versi che si inseguono all'insegna della questione della fede. Luzi cercava di mostrare a Montale una via d'uscita onorevole; Montale rispondeva col suo scetticismo

    Pyrolysis of low-density polyethylene

    No full text
    Pyrolysis of low-density polyethylene in an innovative batch pilot plant, with a hydraulic guard ensuring a safe process, was performed. The influence of process temperature on yield, distribution and composition of products was investigated. The oil/waxes were analyzed by gas chromatography coupled mass spectrometry, while pyrolysis gas was monitored online during the process by micro-gas chromatography. Pyrolysis were carried out at 450, 500, 550 and 600 \ub0C. Results obtained show that low temperatures yield a greater amount of oil/waxes, and a gas enriched in carbon oxides and C3+ hydrocarbons. At higher temperatures, the gas fraction, riche in methane and hydrogen, is predominant over liquid products. This process has proved to be a versatile way to recover polyethylene wastes into valuable oils (rich in aliphatic and simple aromatic hydrocarbons) or gas, to be used as petrochemical feedstock or fuel, thus providing a sustainable method for material and energy recovery of waste packaging
    corecore