65 research outputs found

    Do female Norway rats form social bonds?

    Get PDF
    This study was funded by the SNF-grant 31003A_156152 provided to MT.Social bonds reflect specific and enduring relationships among conspecifics. In some group-living animals, they have been found to generate immediate and long-term fitness benefits. It is currently unclear how important and how widespread social bonds are in animals other than primates. It has been hypothesized that social bonds may help in establishing stable levels of reciprocal cooperation. Norway rats (Rattus norvegicus) reciprocate received help to an unrelated social partner. It is hitherto unknown, however, whether this cooperative behaviour is based on the establishment of social bonds among involved individuals. Norway rats live in social groups that can be very large; hence, without bonds, it may be difficult to keep track of other individuals and their previous behaviour, which is a precondition for generating evolutionarily stable levels of cooperation based on direct reciprocity. Here we tested whether wild-type female rats form bonds among each other, which are stable both over time and across different contexts. In addition, we scrutinized the potential influence of social rank on the establishment of bonds. Despite the fact that the hierarchy structure within groups remained stable over the study period, no stable social bonds were formed between group members. Apparently, social information from consecutive encounters with the same social partner is not accumulated. The lack of long-term social bonds might explain why rats base their decisions to cooperate primarily on the last encounter with a social partner, which may differ from other animals where cooperation is based on the existence of long-term social bonds.PostprintPeer reviewe

    Pseudorabies Virus Infection Alters Neuronal Activity and Connectivity In Vitro

    Get PDF
    Alpha-herpesviruses, including human herpes simplex virus 1 & 2, varicella zoster virus and the swine pseudorabies virus (PRV), infect the peripheral nervous system of their hosts. Symptoms of infection often include itching, numbness, or pain indicative of altered neurological function. To determine if there is an in vitro electrophysiological correlate to these characteristic in vivo symptoms, we infected cultured rat sympathetic neurons with well-characterized strains of PRV known to produce virulent or attenuated symptoms in animals. Whole-cell patch clamp recordings were made at various times after infection. By 8 hours of infection with virulent PRV, action potential (AP) firing rates increased substantially and were accompanied by hyperpolarized resting membrane potentials and spikelet-like events. Coincident with the increase in AP firing rate, adjacent neurons exhibited coupled firing events, first with AP-spikelets and later with near identical resting membrane potentials and AP firing. Small fusion pores between adjacent cell bodies formed early after infection as demonstrated by transfer of the low molecular weight dye, Lucifer Yellow. Later, larger pores formed as demonstrated by transfer of high molecular weight Texas red-dextran conjugates between infected cells. Further evidence for viral-induced fusion pores was obtained by infecting neurons with a viral mutant defective for glycoprotein B, a component of the viral membrane fusion complex. These infected neurons were essentially identical to mock infected neurons: no increased AP firing, no spikelet-like events, and no electrical or dye transfer. Infection with PRV Bartha, an attenuated circuit-tracing strain delayed, but did not eliminate the increased neuronal activity and coupling events. We suggest that formation of fusion pores between infected neurons results in electrical coupling and elevated firing rates, and that these processes may contribute to the altered neural function seen in PRV-infected animals

    Human calorimeter with a new type of gradient layer.

    No full text

    Female major histocompatibility complex type affects male testosterone levels and sperm number in the horse (Equus caballus)

    No full text
    Odours of vertebrates often contain information about the major histocompatibility complex (MHC), and are used in kin recognition, mate choice or female investment in pregnancy. It is, however, still unclear whether MHC-linked signals can also affect male reproductive strategies. We used horses (Equus caballus) to study this question under experimental conditions. Twelve stallions were individually exposed either to an unfamiliar MHC-similar mare and then to an unfamiliar MHC-dissimilar mare, or vice versa. Each exposure lasted over a period of four weeks. Peripheral blood testosterone levels were determined weekly. Three ejaculates each were collected in the week after exposure to both mares (i.e. in the ninth week) to determine mean sperm number and sperm velocity. We found high testosterone levels when stallions were kept close to MHC-dissimilar mares and significantly lower ones when kept close to MHC-similar mares. Mean sperm number per ejaculate (but not sperm velocity) was positively correlated to mean testosterone levels and also affected by the order of presentation of mares: sperm numbers were higher if MHC-dissimilar mares were presented last than if MHC-similar mares were presented last. We conclude that MHC-linked signals influence testosterone secretion and semen characteristics, two indicators of male reproductive strategies

    Delineation of a 1-cM region on distal 5q containing the locus for corneal dystrophies Groenouw type I and lattice type I and exclusion of the candidate genes SPARC and LOX

    No full text
    Granular Groenouw type I (CDGG1) and lattice type 1 (CDL1) corneal dystrophies are two distinct potentially blinding conditions. These two entities were recently mapped to a region on chromosome 5q. We have investigated 2 families of Swiss origin with CDGG1 and CDL1 by linkage analysis. Our data show a maximum lod score of 5.38 at theta = 0.00 for marker D5S393 in CDL1 and 4.17 at theta = 0.00 for D5S658 in CDGG1. When combined, these families show a maximum low score of 9.22 for D5S393 at theta = 0.00. This confirms previous reports. Furthermore, we describe a recombination centromeric to D5S399 in a member of the CDL1 family. Haplotype analysis in the 4 branches of the CDGG1 family demonstrated a common chromosomal region including D5S393 and D5S399 in all the affected members. By combining our data with previously reported mapping information and assuming that CDGG1 and CDL1 are allelic manifestations of the same gene, we can refine the location of the CDGG1/CDL1 gene to a 1-cM region on chromosome 5q. Using candidate genes in the 5q22-q32 interval, we investigated the possibility that mutations in the SPARC or LOX genes cause these corneal diseases. Several recombinations occurred between these two genes and CDGG1/CDL1 in our 2 families, thus excluding this hypothesis
    corecore