119 research outputs found

    Actin and microtubules differently contribute to vacuolar targeting specificity during the export from the er

    Get PDF
    Plants rely on both actin and microtubule cytoskeletons to fine-tune sorting and spatial targeting of membranes during cell growth and stress adaptation. Considerable advances have been made in recent years in the comprehension of the relationship between the trans-Golgi network/early endosome (TGN/EE) and cytoskeletons, but studies have mainly focused on the transport to and from the plasma membrane. We address here the relationship of the cytoskeleton with different endoplasmic reticulum (ER) export mechanisms toward vacuoles. These emergent features of the plant endomembrane traffic are explored with an in vivo approach, providing clues on the traffic regulation at different levels beyond known proteins’ functions and interactions. We show how traffic of vacuolar markers, characterized by different vacuolar sorting determinants, diverges at the export from the ER, clearly involving different components of the cytoskeleton

    New Insights on Plant Cell Elongation: A Role for Acetylcholine

    Get PDF
    We investigated the effect of auxin and acetylcholine on the expression of the tomato expansin gene LeEXPA2, a specific expansin gene expressed in elongating tomato hypocotyl segments. Since auxin interferes with clathrin-mediated endocytosis, in order to regulate cellular and developmental responses we produced protoplasts from tomato elongating hypocotyls and followed the endocytotic marker, FM4-64, internalization in response to treatments. Tomato protoplasts were observed during auxin and acetylcholine treatments after transient expression of chimerical markers of volume-control related compartments such as vacuoles. Here we describe the contribution of auxin and acetylcholine to LeEXPA2 expression regulation and we support the hypothesis that a possible subcellular target of acetylcholine signal is the vesicular transport, shedding some light on the characterization of this small molecule as local mediator in the plant physiological response

    Endomembrane reorganization induced by heavy metals

    Get PDF
    Plant cells maintain plasmatic concentrations of essential heavy metal ions, such as iron, zinc, and copper, within the optimal functional range. To do so, several molecular mechanisms have to be committed to maintain concentrations of non-essential heavy metals and metalloids, such as cadmium, mercury and arsenic below their toxicity threshold levels. Compartmentalization is central to heavy metals homeostasis and secretory compartments, finely interconnected by traffic mechanisms, are determinant. Endomembrane reorganization can have unexpected effects on heavy metals tolerance altering in a complex way membrane permeability, storage, and detoxification ability beyond gene\u2019s expression regulation. The full understanding of endomembrane role is propaedeutic to the comprehension of translocation and hyper-accumulation mechanisms and their applicative employment. It is evident that further studies on dynamic localization of these and many more proteins may significantly contribute to the understanding of heavy metals tolerance mechanisms. The aim of this review is to provide an overview about the endomembrane alterations involved in heavy metals compartmentalization and tolerance in plants

    Genome-wide identification of wrky genes in artemisia annua: Characterization of a putative ortholog of ATWRKY40

    Get PDF
    Artemisia annua L. is well-known as the plant source of artemisinin, a sesquiterpene lactone with effective antimalarial activity. Here, a putative ortholog of the Arabidopsis thaliana WRKY40 transcription factor (TF) was isolated via reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends in A. annua and named AaWRKY40. A putative nuclear localization domain was identified in silico and experimentally confirmed by using protoplasts of A. annua transiently transformed with AaWRKY40-GFP. A genome-wide analysis identified 122 WRKY genes in A. annua, and a manually curated database was obtained. The deduced proteins were categorized into the major WRKY groups, with group IIa containing eight WRKY members including AaWRKY40. Protein motifs, gene structure, and promoter regions of group IIa WRKY TFs of A. annua were characterized. The promoter region of AaWRKY group IIa genes contained several abiotic stress cis-acting regulatory elements, among which a highly conserved W-box motif was identified. Expression analysis of AaWRKY40 compared to AaWRKY1 in A. annua cell cultures treated with methyl jasmonate known to enhance artemisinin production, suggested a possible involvement of AaWRKY40 in terpenoid metabolism. Further investigation is necessary to study the role of AaWRKY40 and possible interactions with other TFs in A. annua

    Physico-chemical properties of inorganic nps influence the absorption rate of aquatic mosses reducing cytotoxicity on intestinal epithelial barrier model

    Get PDF
    Noble metals nanoparticles (NPs) and metal oxide NPs are widely used in different fields of application and commercial products, exposing living organisms to their potential adverse effects. Recent evidences suggest their presence in the aquifers water and consequently in drinking water. In this work, we have carefully synthesized four types of NPs, namely, silver and gold NPs (Ag NPs and Au NPs) and silica and titanium dioxide NPs (SiO2 NPs and TiO2 NPs) having a similar size and negatively charged surfaces. The synthesis of Ag NPs and Au NPs was carried out by colloidal route using silver nitrate (AgNO3 ) and tetrachloroauric (III) acid (HAuCl4 ) while SiO2 NPs and TiO2 NPs were achieved by ternary microemulsion and sol-gel routes, respectively. Once the characterization of NPs was carried out in order to assess their physico-chemical properties, their impact on living cells was studied. We used the human colorectal adenocarcinoma cells (Caco-2), known as the best representative intestinal epithelial barrier model to understand the effects triggered by NPs through ingestion. Then, we moved to explore how water contamination caused by NPs can be lowered by the ability of three species of aquatic moss, namely, Leptodictyum riparium, Vesicularia ferriei, and Taxiphyllum barbieri, to absorb them. The experiments were conducted using two concentrations of NPs (100 µM and 500 Mm as metal content) and two time points (24 h and 48 h), showing a capture rate dependent on the moss species and NPs type. Then, the selected moss species, able to actively capture NPs, appear as a powerful tool capable to purify water from nanostructured materials, and then, to reduce the toxicity associated to the ingestion of contaminated drinking water

    Trafficking routes to the plant vacuole: connecting alternative and classical pathways

    Get PDF
    Due to the numerous roles plant vacuoles play in cell homeostasis, detoxification, and protein storage, the trafficking pathways to this organelle have been extensively studied. Recent evidence, however, suggests that our vision of transport to the vacuole is not as simple as previously imagined. Alternative routes have been identified and are being characterized. Intricate interconnections between routes seem to occur in various cases, complicating the interpretation of data. In this review, we aim to summarize the published evidence and link the emerging data with previous findings. We discuss the current state of information on alternative and classical trafficking routes to the plant vacuole

    Unconventional Transport Routes of Soluble and Membrane Proteins and Their Role in Developmental Biology

    Get PDF
    Many proteins and cargoes in eukaryotic cells are secreted through the conventional secretory pathway that brings proteins and membranes from the endoplasmic reticulum to the plasma membrane, passing through various cell compartments, and then the extracellular space. The recent identification of an increasing number of leaderless secreted proteins bypassing the Golgi apparatus unveiled the existence of alternative protein secretion pathways. Moreover, other unconventional routes for secretion of soluble or transmembrane proteins with initial endoplasmic reticulum localization were identified. Furthermore, other proteins normally functioning in conventional membrane traffic or in the biogenesis of unique plant/fungi organelles or in plasmodesmata transport seem to be involved in unconventional secretory pathways. These alternative pathways are functionally related to biotic stress and development, and are becoming more and more important in cell biology studies in yeast, mammalian cells and in plants. The city of Lecce hosted specialists working on mammals, plants and microorganisms for the inaugural meeting on "Unconventional Protein and Membrane Traffic" (UPMT) during 4-7 October 2016. The main aim of the meeting was to include the highest number of topics, summarized in this report, related to the unconventional transport routes of protein and membranes
    • …
    corecore