1,705 research outputs found

    Airline Schedule Recovery after Airport Closures: Empirical Evidence Since September 11th

    Get PDF
    Since the September 11, 2001 terrorist attacks, repeated airport closures due to potential security breaches have imposed substantial costs on travelers, airlines, and government agencies in terms of flight delays and cancellations. Using data from the year following September 11th, this study examines how airlines recover flight schedules upon reopening of airports that have been closed for security reasons. As such, this is the first study to examine service quality during irregular operations. Our results indicate that while outcomes of flights scheduled during airport closures are difficult to explain, a variety of factors, including potential revenue per flight and logistical variables such as flight distance, seating capacity and shutdown severity, significantly predict outcomes of flights scheduled after airports reopen. Given the likelihood of continued security-related airport closings, understanding the factors that determine schedule recovery is potentially important.

    Does School Choice Increase School Quality?

    Get PDF
    Federal No Child Left Behind' legislation, which enables students of low-performing schools to exercise public school choice, exemplies a widespread belief that competing for students will spur public schools to higher achievement. We investigate how the introduction of school choice in North Carolina, via a dramatic increase in the number of charter schools across the state, affects the performance of traditional public schools on statewide tests. We find test score gains from competition that are robust to a variety of specifications. The introduction of charter school competition causes an approximate one percent increase in the score, which constitutes about one quarter of the average yearly growth.

    Rods coiling about a rigid constraint: helices and perversions

    Get PDF
    Mechanical instabilities can be exploited to design innovative structures, able to change their shape in the presence of external stimuli. In this work, we derive a mathematical model of an elastic beam subjected to an axial force and constrained to smoothly slide along a rigid support, where the distance between the rod midline and the constraint is fixed and finite. Using both theoretical and computational techniques, we characterize the bifurcations of such a mechanical system, in which the axial force and the natural curvature of the beam are used as control parameters. We show that, in the presence of a straight support, the rod can deform into shapes exhibiting helices and perversions, namely transition zones connecting together two helices with opposite chirality. The mathematical predictions of the proposed model are also compared with some experiments, showing a good quantitative agreement. In particular, we find that the buckled configurations may exhibit multiple perversions and we propose a possible explanation for this phenomenon based on the energy landscape of the mechanical system

    Control and navigation problems for model bio-inspired microswimmers

    Get PDF
    Navigation problems for a model bio-inspired micro-swimmer, consisting of a cargo head and propelled by multiple rotating flagella or propellers and swimming at low Reynolds numbers, are formulated and solved. We consider both the direct problem, namely, predicting velocity and trajectories of the swimmer as a consequence of prescribed rotation rates of the propellers, and inverse problems, namely, find the rotation rates to best approximate desired translational and rotational velocities and, ultimately, target trajectories. The equations of motion of the swimmer express the balance of the forces and torques acting on the swimmer, and relate translational and rotational velocities of the cargo head to rotation rates of the propellers. The coefficients of these equations, representing hydrodynamic resistance coefficients, are evaluated numerically through a custom-built finite-element code to simulate the (Stokes) fluid flows generated by the movement of the swimmer and of its parts. Several designs of the propulsive rotors are considered: from helical flagella with different chirality to marine propellers, and their relative performance is assessed

    Cell-Type-Specific Synchronization of Neural Activity in FEF with V4 during Attention

    Get PDF
    SummaryShifts of gaze and shifts of attention are closely linked and it is debated whether they result from the same neural mechanisms. Both processes involve the frontal eye fields (FEF), an area which is also a source of top-down feedback to area V4 during covert attention. To test the relative contributions of oculomotor and attention-related FEF signals to such feedback, we recorded simultaneously from both areas in a covert attention task and in a saccade task. In the attention task, only visual and visuomovement FEF neurons showed enhanced responses, whereas movement cells were unchanged. Importantly, visual, but not movement or visuomovement cells, showed enhanced gamma frequency synchronization with activity in V4 during attention. Within FEF, beta synchronization was increased for movement cells during attention but was suppressed in the saccade task. These findings support the idea that the attentional modulation of visual processing is not mediated by movement neurons

    Mechanics of axisymmetric sheets of interlocking and slidable rods

    Get PDF
    In this work, we study the mechanics of metamaterial sheets inspired by the pellicle of Euglenids. They are composed of interlocking elastic rods which can freely slide along their edges. We characterize the kinematics and the mechanics of these structures using the special Cosserat theory of rods and by assuming axisymmetric deformations of the tubular assembly. Through an asymptotic expansion, we investigate both structures that comprise a discrete number of rods and the limit case of a sheet composed by infinitely many rods. We apply our theoretical framework to investigate the stability of these structures in the presence of an axial load. Through a linear analysis, we compute the critical buckling force for both the discrete and the continuous case. For the latter, we also perform a numerical post-buckling analysis, studying the non-linear evolution of the bifurcation through finite elements simulations

    High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention

    Get PDF
    Electrical recordings in humans and monkeys show attentional enhancement of evoked responses and gamma synchrony in ventral stream cortical areas. Does this synchrony result from intrinsic activity in visual cortex or from inputs from other structures? Using paired recordings in the frontal eye field (FEF) and area V4, we found that attention to a stimulus in their joint receptive field leads to enhanced oscillatory coupling between the two areas, particularly at gamma frequencies. This coupling appeared to be initiated by FEF and was time-shifted by about 8 to 13 milliseconds across a range of frequencies. Considering the expected conduction and synaptic delays between the areas, this time-shifted coupling at gamma frequencies may optimize the postsynaptic impact of spikes from one area upon the other, improving cross-area communication with attention.Grant EY017292Grant EY1792

    Uniaxial and biaxial soft deformations of nematic elastomers

    Full text link
    We give a geometric interpretation of the soft elastic deformation modes of nematic elastomers, with explicit examples, for both uniaxial and biaxial nematic order. We show the importance of body rotations in this non-classical elasticity and how the invariance under rotations of the reference and target states gives soft elasticity (the Golubovic and Lubensky theorem). The role of rotations makes the Polar Decomposition Theorem vital for decomposing general deformations into body rotations and symmetric strains. The role of the square roots of tensors is discussed in this context and that of finding explicit forms for soft deformations (the approach of Olmsted).Comment: 10 pages, 10 figures, RevTex, AmsTe

    Soft elastic response of stretched sheets of nematic elastomers: a numerical study

    Get PDF
    Abstract. Stretching experiments on sheets of nematic elastomers have revealed soft deformation modes and formation of microstructure in parts of the sample. Both phenomena are manifestations of the existence of a symmetrybreaking phase transformation from a random, isotropic phase to an aligned, nematic phase. The microscopic energy proposed by Bladon, Terentjev and Warner [Phys. Rev. E 47 (1993), 3838] to model this transition delivers a continuum of symmetry-related zero-energy states, which can be combined in different ways to achieve a variety of zero-energy macroscopic deformations. We replace the microscopic energy with a macroscopic effective energy, the so-called quasiconvexification. This procedure yields a coarse-grained description of the physics of the system, with (energetically optimal) small-scale oscillations of the state variables correctly accounted for in the energetics, but averaged out in the kinematics. Knowledge of the quasiconvexified energy enables us to compute efficiently with finite elements, and to simulate numerically stretching experiments on sheets of nematic elastomers. Our numerical experiments show that up to a critical, geometry-dependent stretch, no reaction force arises. At larger stretches, a force is transmitted through parts of the sheet and, although fine phase mixtures disappear from most of the sample, microstructures survive in some pockets. We reconstruct from the computed deformation gradients a possible composition of the microstructure, thereby resolving the local orientation of the nematic director
    • …
    corecore