2,949 research outputs found
Numerical simulation of one-dimensional heat transfer in composite bodies with phase change
A numerical simulation was developed to investigate the one dimensional heat transfer occurring in a system composed of a layered aircraft blade having an ice deposit on its surface. The finite difference representation of the heat conduction equations was done using the Crank-Nicolson implicit finite difference formulation. The simulation considers uniform or time dependent heat sources, from heaters which can be either point sources or of finite thickness. For the ice water phase change, a numerical method which approximates the latent heat effect by a large heat capacity over a small temperature interval was applied. The simulation describes the temperature profiles within the various layers of the de-icer pad, as well as the movement of the ice water interface. The simulation could also be used to predict the one dimensional temperature profiles in any composite slab having different boundary conditions
An introduction to quantum gravity
After an overview of the physical motivations for studying quantum gravity,
we reprint THE FORMAL STRUCTURE OF QUANTUM GRAVITY, i.e. the 1978 Cargese
Lectures by Professor B.S. DeWitt, with kind permission of Springer. The reader
is therefore introduced, in a pedagogical way, to the functional integral
quantization of gravitation and Yang-Mills theory. It is hoped that such a
paper will remain useful for all lecturers or Ph.D. students who face the task
of introducing (resp. learning) some basic concepts in quantum gravity in a
relatively short time. In the second part, we outline selected topics such as
the braneworld picture with the same covariant formalism of the first part, and
spectral asymptotics of Euclidean quantum gravity with diffeomorphism-invariant
boundary conditions. The latter might have implications for singularity
avoidance in quantum cosmology.Comment: 68 pages, Latex file. Sections from 2 to 17 are published thanks to
kind permission of Springe
Analysis and evaluation of an integrated laminar flow control propulsion system
Reduction of drag has been a major goal of the aircraft industry as no other single quantity influences the operating costs of transport aircraft more than aerodynamic drag. It has been estimated that even modest reduction of frictional drag could reduce fuel costs by anywhere from 2 to 5 percent. Current research on boundary layer drag reduction deals with various approaches to reduce turbulent skin friction drag as a means of improving aircraft performance. One of the techniques belonging to this category is laminar flow control in which extensive regions of laminar flow are maintained over aircraft surfaces by delaying transition to turbulence through the ingestion of boundary layer air. While problems of laminar flow control have been studied in some detail, the prospect of improving the propulsion system of an aircraft by the use of ingested boundary layer air has received very little attention. An initial study for the purpose of reducing propulsion system requirements by utilizing the kinetic energy of boundary layer air was performed in the mid-1970's at LeRC. This study which was based on ingesting the boundary layer air at a single location, did not yield any significant overall propulsion benefits; therefore, the concept was not pursued further. However, since then it has been proposed that if the boundary layer air were ingested at various locations on the aircraft surface instead of just at one site, an improvement in the propulsion system might be realized. The present report provides a review of laminar flow control by suction and focuses on the problems of reducing skin friction drag by maintaining extensive regions of laminar flow over the aircraft surfaces. In addition, it includes an evaluation of an aircraft propulsion system that is augmented by ingested boundary layer air
Radiation Information from 1958 δ2
The telemetered radiation information from the satellite 1958 δ2
(Sputnik III) has been analyzed for sixty-two separate passes recorded
in College, Alaska. The data indicate a dependence of radiation intensity
on altitude in the range 250-500 km. Both the high and low
energy components apparently contribute to the overall increase of
intensity with altitude, but the presence of a continuous afterglow
in the scintillating crystal prevented detailed interpretation of the
results.IGY Project No. 32.42
NSF Grant No. Y/32.42/268Ye
"Microscopic" approach to the Ricci dark energy
A derivation of the Ricci dark energy from quantum field theory of
fluctuating "matter" fields in a classical gravitational background is
presented. The coupling to the dark energy, the parameter 'a', is estimated in
the framework of our formalism, and qualitatively it appears to be within
observational expectations.Comment: 7 page
Worldline approach to vector and antisymmetric tensor fields
The N=2 spinning particle action describes the propagation of antisymmetric
tensor fields, including vector fields as a special case. In this paper we
study the path integral quantization on a one-dimensional torus of the N=2
spinning particle coupled to spacetime gravity. The action has a local N=2
worldline supersymmetry with a gauged U(1) symmetry that includes a
Chern-Simons coupling. Its quantization on the torus produces the one-loop
effective action for a single antisymmetric tensor. We use this worldline
representation to calculate the first few Seeley-DeWitt coefficients for
antisymmetric tensor fields of arbitrary rank in arbitrary dimensions. As side
results we obtain the correct trace anomaly of a spin 1 particle in four
dimensions as well as exact duality relations between differential form gauge
fields. This approach yields a drastic simplification over standard heat-kernel
methods. It contains on top of the usual proper time a new modular parameter
implementing the reduction to a single tensor field. Worldline methods are
generically simpler and more efficient in perturbative computations then
standard QFT Feynman rules. This is particularly evident when the coupling to
gravity is considered.Comment: 30 pages, 5 figures, references adde
Non-Perturbative One-Loop Effective Action for Electrodynamics in Curved Spacetime
In this paper we explicitly evaluate the one-loop effective action in four
dimensions for scalar and spinor fields under the influence of a strong,
covariantly constant, magnetic field in curved spacetime. In the framework of
zeta function regularization, we find the one-loop effective action to all
orders in the magnetic field up to linear terms in the Riemannian curvature. As
a particular case, we also obtain the one-loop effective action for massless
scalar and spinor fields. In this setting, we found that the vacuum energy of
charged spinors with small mass becomes very large due entirely by the
gravitational correction.Comment: LaTeX, 23 page
Convective heat transfer measurements from a NACA 0012 airfoil in flight and in the NASA Lewis Icing Research Tunnel
Local heat transfer coefficients were measured on a smooth and roughened NACA 0012 airfoil. Heat transfer measurements on the 0.533 m chord airfoil were made both in flight on the NASA Lewis Twin Otter Icing Research Aircraft and in the NASA Lewis Icing Research Tunnel (IRT). Roughness was obtained by the attachment of uniform 2 mm diameter hemispheres to the airfoil surface in 4 distinct patterns. Flight data were taken for the smooth and roughened airfoil at various Reynolds numbers based on chord in the range 1.24 to 2.50 x 10(exp 6) and at various angles of attack up to 4 deg. During these flight tests, the free stream velocity turbulence intensity was found to be very low (less than 0.1 percent). Wind tunnel data were acquired in the Reynolds number range 1.20 to 4.25 x 10(exp 6) and at angles of attack from -4 to 8 deg. The turbulence intensity in the IRT was 0.5 to 0.7 percent with the cloud generating sprays off. A direct comparison was made between the results obtained in flight and in the IRT. The higher level of turbulence in the IRT vs. flight had little effect on the heat transfer for the lower Reynolds numbers but caused a moderate increase in heat transfer at the high Reynolds numbers. Roughness generally increased the heat transfer
Coupling of Linearized Gravity to Nonrelativistic Test Particles: Dynamics in the General Laboratory Frame
The coupling of gravity to matter is explored in the linearized gravity
limit. The usual derivation of gravity-matter couplings within the
quantum-field-theoretic framework is reviewed. A number of inconsistencies
between this derivation of the couplings, and the known results of tidal
effects on test particles according to classical general relativity are pointed
out. As a step towards resolving these inconsistencies, a General Laboratory
Frame fixed on the worldline of an observer is constructed. In this frame, the
dynamics of nonrelativistic test particles in the linearized gravity limit is
studied, and their Hamiltonian dynamics is derived. It is shown that for
stationary metrics this Hamiltonian reduces to the usual Hamiltonian for
nonrelativistic particles undergoing geodesic motion. For nonstationary metrics
with long-wavelength gravitational waves (GWs) present, it reduces to the
Hamiltonian for a nonrelativistic particle undergoing geodesic
\textit{deviation} motion. Arbitrary-wavelength GWs couple to the test particle
through a vector-potential-like field , the net result of the tidal forces
that the GW induces in the system, namely, a local velocity field on the system
induced by tidal effects as seen by an observer in the general laboratory
frame. Effective electric and magnetic fields, which are related to the
electric and magnetic parts of the Weyl tensor, are constructed from that
obey equations of the same form as Maxwell's equations . A gedankin
gravitational Aharonov-Bohm-type experiment using to measure the
interference of quantum test particles is presented.Comment: 38 pages, 7 figures, written in ReVTeX. To appear in Physical Review
D. Galley proofs corrections adde
TeV Scale Lee-Wick Fields out of Large Extra Dimensional Gravity
We study the gravitational corrections to the Maxwell, Dirac and Klein-Gorden
theories in the large extra dimension model in which the gravitons propagate in
the (4+n)-dimensional bulk, while the gauge and matter fields are confined to
the four-dimensional world. The corrections to the two-point Green's functions
of the gauge and matter fields from the exchanges of virtual Kaluza-Klein
gravitons are calculated in the gauge independent background field method. In
the framework of effective field theory, we show that the modified one-loop
renormalizable Lagrangian due to quantum gravitational effects contains a TeV
scale Lee-Wick partner of every gauge and matter field as extra degrees of
freedom in the theory. Thus the large extra dimension model of gravity provides
a natural mechanism to the emergence of these exotic particles which were
recently used to construct an extension of the Standard Model.Comment: 17 pages, 3 figures, references added, to appear in Phys. Rev.
- …