2,948 research outputs found

    Numerical simulation of one-dimensional heat transfer in composite bodies with phase change

    Get PDF
    A numerical simulation was developed to investigate the one dimensional heat transfer occurring in a system composed of a layered aircraft blade having an ice deposit on its surface. The finite difference representation of the heat conduction equations was done using the Crank-Nicolson implicit finite difference formulation. The simulation considers uniform or time dependent heat sources, from heaters which can be either point sources or of finite thickness. For the ice water phase change, a numerical method which approximates the latent heat effect by a large heat capacity over a small temperature interval was applied. The simulation describes the temperature profiles within the various layers of the de-icer pad, as well as the movement of the ice water interface. The simulation could also be used to predict the one dimensional temperature profiles in any composite slab having different boundary conditions

    An introduction to quantum gravity

    Full text link
    After an overview of the physical motivations for studying quantum gravity, we reprint THE FORMAL STRUCTURE OF QUANTUM GRAVITY, i.e. the 1978 Cargese Lectures by Professor B.S. DeWitt, with kind permission of Springer. The reader is therefore introduced, in a pedagogical way, to the functional integral quantization of gravitation and Yang-Mills theory. It is hoped that such a paper will remain useful for all lecturers or Ph.D. students who face the task of introducing (resp. learning) some basic concepts in quantum gravity in a relatively short time. In the second part, we outline selected topics such as the braneworld picture with the same covariant formalism of the first part, and spectral asymptotics of Euclidean quantum gravity with diffeomorphism-invariant boundary conditions. The latter might have implications for singularity avoidance in quantum cosmology.Comment: 68 pages, Latex file. Sections from 2 to 17 are published thanks to kind permission of Springe

    Analysis and evaluation of an integrated laminar flow control propulsion system

    Get PDF
    Reduction of drag has been a major goal of the aircraft industry as no other single quantity influences the operating costs of transport aircraft more than aerodynamic drag. It has been estimated that even modest reduction of frictional drag could reduce fuel costs by anywhere from 2 to 5 percent. Current research on boundary layer drag reduction deals with various approaches to reduce turbulent skin friction drag as a means of improving aircraft performance. One of the techniques belonging to this category is laminar flow control in which extensive regions of laminar flow are maintained over aircraft surfaces by delaying transition to turbulence through the ingestion of boundary layer air. While problems of laminar flow control have been studied in some detail, the prospect of improving the propulsion system of an aircraft by the use of ingested boundary layer air has received very little attention. An initial study for the purpose of reducing propulsion system requirements by utilizing the kinetic energy of boundary layer air was performed in the mid-1970's at LeRC. This study which was based on ingesting the boundary layer air at a single location, did not yield any significant overall propulsion benefits; therefore, the concept was not pursued further. However, since then it has been proposed that if the boundary layer air were ingested at various locations on the aircraft surface instead of just at one site, an improvement in the propulsion system might be realized. The present report provides a review of laminar flow control by suction and focuses on the problems of reducing skin friction drag by maintaining extensive regions of laminar flow over the aircraft surfaces. In addition, it includes an evaluation of an aircraft propulsion system that is augmented by ingested boundary layer air

    Radiation Information from 1958 δ2

    Get PDF
    The telemetered radiation information from the satellite 1958 δ2 (Sputnik III) has been analyzed for sixty-two separate passes recorded in College, Alaska. The data indicate a dependence of radiation intensity on altitude in the range 250-500 km. Both the high and low energy components apparently contribute to the overall increase of intensity with altitude, but the presence of a continuous afterglow in the scintillating crystal prevented detailed interpretation of the results.IGY Project No. 32.42 NSF Grant No. Y/32.42/268Ye

    "Microscopic" approach to the Ricci dark energy

    Full text link
    A derivation of the Ricci dark energy from quantum field theory of fluctuating "matter" fields in a classical gravitational background is presented. The coupling to the dark energy, the parameter 'a', is estimated in the framework of our formalism, and qualitatively it appears to be within observational expectations.Comment: 7 page

    Worldline approach to vector and antisymmetric tensor fields

    Full text link
    The N=2 spinning particle action describes the propagation of antisymmetric tensor fields, including vector fields as a special case. In this paper we study the path integral quantization on a one-dimensional torus of the N=2 spinning particle coupled to spacetime gravity. The action has a local N=2 worldline supersymmetry with a gauged U(1) symmetry that includes a Chern-Simons coupling. Its quantization on the torus produces the one-loop effective action for a single antisymmetric tensor. We use this worldline representation to calculate the first few Seeley-DeWitt coefficients for antisymmetric tensor fields of arbitrary rank in arbitrary dimensions. As side results we obtain the correct trace anomaly of a spin 1 particle in four dimensions as well as exact duality relations between differential form gauge fields. This approach yields a drastic simplification over standard heat-kernel methods. It contains on top of the usual proper time a new modular parameter implementing the reduction to a single tensor field. Worldline methods are generically simpler and more efficient in perturbative computations then standard QFT Feynman rules. This is particularly evident when the coupling to gravity is considered.Comment: 30 pages, 5 figures, references adde

    Non-Perturbative One-Loop Effective Action for Electrodynamics in Curved Spacetime

    Full text link
    In this paper we explicitly evaluate the one-loop effective action in four dimensions for scalar and spinor fields under the influence of a strong, covariantly constant, magnetic field in curved spacetime. In the framework of zeta function regularization, we find the one-loop effective action to all orders in the magnetic field up to linear terms in the Riemannian curvature. As a particular case, we also obtain the one-loop effective action for massless scalar and spinor fields. In this setting, we found that the vacuum energy of charged spinors with small mass becomes very large due entirely by the gravitational correction.Comment: LaTeX, 23 page

    Convective heat transfer measurements from a NACA 0012 airfoil in flight and in the NASA Lewis Icing Research Tunnel

    Get PDF
    Local heat transfer coefficients were measured on a smooth and roughened NACA 0012 airfoil. Heat transfer measurements on the 0.533 m chord airfoil were made both in flight on the NASA Lewis Twin Otter Icing Research Aircraft and in the NASA Lewis Icing Research Tunnel (IRT). Roughness was obtained by the attachment of uniform 2 mm diameter hemispheres to the airfoil surface in 4 distinct patterns. Flight data were taken for the smooth and roughened airfoil at various Reynolds numbers based on chord in the range 1.24 to 2.50 x 10(exp 6) and at various angles of attack up to 4 deg. During these flight tests, the free stream velocity turbulence intensity was found to be very low (less than 0.1 percent). Wind tunnel data were acquired in the Reynolds number range 1.20 to 4.25 x 10(exp 6) and at angles of attack from -4 to 8 deg. The turbulence intensity in the IRT was 0.5 to 0.7 percent with the cloud generating sprays off. A direct comparison was made between the results obtained in flight and in the IRT. The higher level of turbulence in the IRT vs. flight had little effect on the heat transfer for the lower Reynolds numbers but caused a moderate increase in heat transfer at the high Reynolds numbers. Roughness generally increased the heat transfer

    Coupling of Linearized Gravity to Nonrelativistic Test Particles: Dynamics in the General Laboratory Frame

    Get PDF
    The coupling of gravity to matter is explored in the linearized gravity limit. The usual derivation of gravity-matter couplings within the quantum-field-theoretic framework is reviewed. A number of inconsistencies between this derivation of the couplings, and the known results of tidal effects on test particles according to classical general relativity are pointed out. As a step towards resolving these inconsistencies, a General Laboratory Frame fixed on the worldline of an observer is constructed. In this frame, the dynamics of nonrelativistic test particles in the linearized gravity limit is studied, and their Hamiltonian dynamics is derived. It is shown that for stationary metrics this Hamiltonian reduces to the usual Hamiltonian for nonrelativistic particles undergoing geodesic motion. For nonstationary metrics with long-wavelength gravitational waves (GWs) present, it reduces to the Hamiltonian for a nonrelativistic particle undergoing geodesic \textit{deviation} motion. Arbitrary-wavelength GWs couple to the test particle through a vector-potential-like field NaN_a, the net result of the tidal forces that the GW induces in the system, namely, a local velocity field on the system induced by tidal effects as seen by an observer in the general laboratory frame. Effective electric and magnetic fields, which are related to the electric and magnetic parts of the Weyl tensor, are constructed from NaN_a that obey equations of the same form as Maxwell's equations . A gedankin gravitational Aharonov-Bohm-type experiment using NaN_a to measure the interference of quantum test particles is presented.Comment: 38 pages, 7 figures, written in ReVTeX. To appear in Physical Review D. Galley proofs corrections adde

    TeV Scale Lee-Wick Fields out of Large Extra Dimensional Gravity

    Full text link
    We study the gravitational corrections to the Maxwell, Dirac and Klein-Gorden theories in the large extra dimension model in which the gravitons propagate in the (4+n)-dimensional bulk, while the gauge and matter fields are confined to the four-dimensional world. The corrections to the two-point Green's functions of the gauge and matter fields from the exchanges of virtual Kaluza-Klein gravitons are calculated in the gauge independent background field method. In the framework of effective field theory, we show that the modified one-loop renormalizable Lagrangian due to quantum gravitational effects contains a TeV scale Lee-Wick partner of every gauge and matter field as extra degrees of freedom in the theory. Thus the large extra dimension model of gravity provides a natural mechanism to the emergence of these exotic particles which were recently used to construct an extension of the Standard Model.Comment: 17 pages, 3 figures, references added, to appear in Phys. Rev.
    corecore