41 research outputs found

    Pathomechanisms of a CLCN1 Mutation Found in a Russian Family Suffering From Becker's Myotonia

    Get PDF
    Objective: Myotonia congenita (MC) is a rare muscle disease characterized by sarcolemma over-excitability inducing skeletal muscle stiffness. It can be inherited either as an autosomal dominant (Thomsen's disease) or an autosomal recessive (Becker's disease) trait. Both types are caused by loss-of-function mutations in the CLCN1 gene, encoding for ClC-1 chloride channel. We found a ClC-1 mutation, p.G411C, identified in Russian patients who suffered from a severe form of Becker's disease. The purpose of this study was to provide a solid correlation between G411C dysfunction and clinical symptoms in the affected patient. Methods: We provide clinical and genetic information of the proband kindred. Functional studies include patch-clamp electrophysiology, biotinylation assay, western blot analysis, and confocal imaging of G411C and wild-type ClC-1 channels expressed in HEK293T cells. Results: The G411C mutation dramatically abolished chloride currents in transfected HEK cells. Biochemical experiments revealed that the majority of G411C mutant channels did not reach the plasma membrane but remained trapped in the cytoplasm. Treatment with the proteasome inhibitor MG132 reduced the degradation rate of G411C mutant channels, leading to their expression at the plasma membrane. However, despite an increase in cell surface expression, no significant chloride current was recorded in the G411C-transfected cell treated with MG132, suggesting that this mutation produces non-functional ClC-1 chloride channels. Conclusion: These results suggest that the molecular pathophysiology of G411C is linked to a reduced plasma membrane expression and biophysical dysfunction of mutant channels, likely due to a misfolding defect. Chloride current abolition confirms that the mutation is responsible for the clinical phenotype

    ΠžΡ†Π΅Π½ΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ состояния ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ ΠΌΠΎΠ½ΠΎΠ½ΡƒΠΊΠ»Π΅Π°Ρ€Π½Ρ‹Ρ… Π»Π΅ΠΉΠΊΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с хроничСской сСрдСчной Π½Π΅Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎΠ΄ влияниСм ΡƒΠ±ΠΈΠ΄Π΅ΠΊΠ°Ρ€Π΅Π½ΠΎΠ½Π°

    Get PDF
    Aim. To evaluate the functional state of mitochondria isolated from peripheral blood mononuclear leukocytes using flow cytometry in patients with chronic heart failure receiving ubidecarenone (coenzyme Q).Materials and methods. The study included 53 patients with chronic heart failure who had experienced myocardial infarction. The patients were divided into two groups: group 1 received optimally chosen standard therapy, while group 2 received optimally chosen standard therapy and ubidecarenone (β€œKudevite”). The mitochondrial membrane potential was evaluated by flow cytometry using propidium iodide and 3,3β€²-dihexyloxacarbocyanine iodide (DiOC6(3)). The levels of coenzyme Q were determined using high-performance liquid chromatography with ultraviolet (UV) detection.Results. A direct correlation was established between the coenzyme Q levels in the blood plasma and the percentage of DiOC6(3)-positive cells (R = 0.39; Ρ€ < 0.05) in the patients with chronic heart failure. In group 1, no significant differences in the coenzyme Q levels and the percentage of DiOC6(3)-positive and DiOC6(3)-negative cells before and after the therapy were observed. In group 2, a significant increase in the proportion of DiOC6(3)-positive cells and a significant decrease in the percentage of DiOC6(3)-negative cells were revealed.Conclusion. The increase in the functional activity of mitochondria in the patients with chronic heart failure receiving ubidecarenone was identified. Flow cytometry can be used to evaluate the functional state of mitochondria and observe the efficiency of the selected therapy. ЦСль – ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ состояниС ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ ΠΌΠΎΠ½ΠΎΠ½ΡƒΠΊΠ»Π΅Π°Ρ€Π½Ρ‹Ρ… Π»Π΅ΠΉΠΊΠΎΡ†ΠΈΡ‚ΠΎΠ² пСрифСричСской ΠΊΡ€ΠΎΠ²ΠΈ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с хроничСской сСрдСчной Π½Π΅Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ Π½Π° Ρ„ΠΎΠ½Π΅ ΠΏΡ€ΠΈΠ΅ΠΌΠ° ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° ΡƒΠ±ΠΈΠ΄Π΅ΠΊΠ°Ρ€Π΅Π½ΠΎΠ½Π° (коэнзима Q).ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π’ исслСдованиС Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ 53 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° с хроничСской сСрдСчной Π½Π΅Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ послС пСрСнСсСнного ΠΈΠ½Ρ„Π°Ρ€ΠΊΡ‚Π° ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π°. ΠŸΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρ‹ Π±Ρ‹Π»ΠΈ распрСдСлСны Π² Π΄Π²Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹: пСрвая Π³Ρ€ΡƒΠΏΠΏΠ° ΠΏΠΎΠ»ΡƒΡ‡Π°Π»Π° Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎ ΠΏΠΎΠ΄ΠΎΠ±Ρ€Π°Π½Π½ΡƒΡŽ ΡΡ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½ΡƒΡŽ Ρ‚Π΅Ρ€Π°ΠΏΠΈΡŽ, вторая Π³Ρ€ΡƒΠΏΠΏΠ° – Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎ ΠΏΠΎΠ΄ΠΎΠ±Ρ€Π°Π½Π½ΠΎΠΉ ΠΌΠ΅Π΄ΠΈΠΊΠ°ΠΌΠ΅Π½Ρ‚ΠΎΠ·Π½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π»Π° ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ ΡƒΠ±ΠΈΠ΄Π΅ΠΊΠ°Ρ€Π΅Π½ΠΎΠ½Π° (Β«ΠšΡƒΠ΄Π΅Π²ΠΈΡ‚Π°Β»). ΠžΡ†Π΅Π½ΠΊΠ° ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ йодистого пропидия ΠΈ ΠΉΠΎΠ΄ΠΈΠ΄ 3,3’-дигСксилоксакарбоцианина (DiOC6(3)). ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ содСрТания коэнзима Q Π² ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ высокоэффСктивной Тидкостной Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ с ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ„ΠΈΠΎΠ»Π΅Ρ‚ΠΎΠ²ΠΎΠΉ Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠ΅ΠΉ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ВыявлСна прямая коррСляционная Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΌΠ΅ΠΆΠ΄Ρƒ содСрТаниСм коэнзима Q Π² ΠΏΠ»Π°Π·ΠΌΠ΅ ΠΊΡ€ΠΎΠ²ΠΈ ΠΈ ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ΠΎΠΌ DiOC-ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ (R = 0,39; Ρ€ < 0,05) Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с хроничСской сСрдСчной Π½Π΅Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ. Π’ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π°Π²ΡˆΠΈΡ… Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎ ΠΏΠΎΠ΄ΠΎΠ±Ρ€Π°Π½Π½ΡƒΡŽ ΡΡ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½ΡƒΡŽ Ρ‚Π΅Ρ€Π°ΠΏΠΈΡŽ, Π½Π΅ выявлСно статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Ρ… Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΉ Π² содСрТании коэнзима Q ΠΈ ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚Π½ΠΎΠΌ содСрТании DiOC-ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΈ DiOC-Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π΄ΠΎ Π½Π°Ρ‡Π°Π»Π° ΠΈ послС Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. Π’ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π°Π²ΡˆΠΈΡ… Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ ΡƒΠ±ΠΈΠ΄Π΅ΠΊΠ°Ρ€Π΅Π½ΠΎΠ½Π°, послС Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ наблюдалось статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ΅ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π΄ΠΎΠ»ΠΈ DiOC-ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ Π΄ΠΎΠ»ΠΈ DiOC-Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. УстановлСно ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ активности ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с хроничСской сСрдСчной Π½Π΅Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ Π½Π° Ρ„ΠΎΠ½Π΅ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠΌ ΡƒΠ±ΠΈΠ΄Π΅ΠΊΠ°Ρ€Π΅Π½ΠΎΠ½Π°. ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использован для ΠΎΡ†Π΅Π½ΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ состояния ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ ΠΈ контроля эффСктивности примСняСмой Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ

    Biallelic MFSD2A variants associated with congenital microcephaly, developmental delay, and recognizable neuroimaging features

    Get PDF
    Major Facilitator Superfamily Domain containing 2a (MFSD2A) is an essential endothelial lipid transporter at the blood-brain barrier. Biallelic variants affecting function in MFSD2A cause autosomal recessive primary microcephaly 15 (MCPH15, OMIM# 616486). We sought to expand our knowledge of the phenotypic spectrum of MCPH15 and demonstrate the underlying mechanism of inactivation of the MFSD2A transporter. We carried out detailed analysis of the clinical and neuroradiological features of a series of 27 MCPH15 cases, including eight new individuals from seven unrelated families. Genetic investigation was performed through exome sequencing (ES). Structural insights on the human Mfsd2a model and in-vitro biochemical assays were used to investigate the functional impact of the identified variants. All patients had primary microcephaly and severe developmental delay. Brain MRI showed variable degrees of white matter reduction, ventricular enlargement, callosal hypodysgenesis, and pontine and vermian hypoplasia. ES led to the identification of six novel biallelic MFSD2A variants (NG_053084.1, NM_032793.5: c.556+1G>A, c.748G>T; p.(Val250Phe), c.750_753del; p.(Cys251SerfsTer3), c.977G>A; p.(Arg326His), c.1386_1435del; p.(Gln462HisfsTer17), and c.1478C>T; p.(Pro493Leu)) and two recurrent variants (NM_032793.5: c.593C>T; p.(Thr198Met) and c.476C>T; p.(Thr159Met)). All these variants and the previously reported NM_032793.5: c.490C>A; p.(Pro164Thr) resulted in either reduced MFSD2A expression and/or transport activity. Our study further delineates the phenotypic spectrum of MCPH15, refining its clinical and neuroradiological characterization and supporting that MFSD2A deficiency causes early prenatal brain developmental disruption. We also show that poor MFSD2A expression despite normal transporter activity is a relevant pathomechanism in MCPH15

    Clinical and genetic characteristics of Charcot–Marie–Tooth disease type 4D (type Lom) in Russia

    Get PDF
    Introduction. Charcot–Marie–Tooth disease type 4D is a hereditary demyelinating neuropathy, that occurs with the high frequency in patients of Roma origin. It is characterized by early onset at the age of 2–10 years and hearing impairment, manifested by the 3rd decade of life.Aim of the study. To describe the clinical and genetic characteristics of Charcot–Marie–Tooth disease type 4D in Russian patients of Roma origin.Materials and methods. For 14 probands from unrelated families of Roma origin with a clinical diagnosis of Charcot–Marie–Tooth disease, genetic tests for the pathogenic variants c. 442C>T in the NDRG1 gene and c. 3325C>T in the SH3TC2 gene was carried out. For 8 patients with Charcot–Marie–Tooth disease type 4D, detailed clinical and electrophysiological examination was performed.Results. In 11 families of Roma origin, the c. 442C>T pathogenic variant in the NDRG1 gene in a homozygous state was detected, which accounted for 79 % all observed Roma patients with Charcot–Marie–Tooth disease. There are 12 of the 14 tested families live in the European part of Russia, 7 of them are from nearby regions. The average age of onset was 3.3 years. The first symptom in 7 of 8 patients was gait disturbances. At the time of examination (age range 6–19 years), all patients showed marked hypotrophy and weakness of the feet, lower leg, hands muscles, feet deformities, reduction or loss of tendon reflexes.Discussion. Due to the detection of only one pathogenic variant in most Russian patients of Roma origin with Charcot–Marie–Tooth disease, the knowledge of the ethnicity of a proband with early myelinopathy can significantly simplify the confirmation of the diagnosis on the molecular level

    Клинико-гСнСтичСскиС характСристики ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ российского ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° с синдромом Ρ‡Π΅Ρ€Π΅ΠΏΠ½ΠΎΠ»ΠΈΡ†Π΅Π²Ρ‹Ρ… дисморфий-Π³Π»ΡƒΡ…ΠΎΡ‚Ρ‹-Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΉ Π²Π΅Ρ€Ρ…Π½ΠΈΡ… конСчностСй, обусловлСнным ΠΌΡƒΡ‚Π°Ρ†ΠΈΠ΅ΠΉ Π² Π³Π΅Π½Π΅ PAX3

    Get PDF
    Craniofacial dysmorphia-deafness-anomalies of the upper limbs is a rare autosomal dominant syndrome caused by variants in the PAX3 gene. In contrast to the two main nosological forms – Waardenburg syndrome types 1 and 3, caused by variants in this gene, the syndrome of craniofacial dysmorphias-deafness-anomalies of the upper limbs is not characterized by the presence of hair hypopigmentation and heterochromia of the iris, while congenital contractures of the wrist and interphalangeal joints of the hands. There is a description in the literature of three patients from the same family with a syndrome caused by the c.141C>G(p.Asn47Lys) variant in the PAX3 gene. Aim of the work is to present the clinical and genetic characteristics of the first Russian patient with the syndrome of craniofacial dysmorphia-deafness-anomalies of the upper extremities.Molecular genetic analysis of a 1-year and 10-month-old proband with phenotypic signs of the syndrome of craniofacial dysmorphia-deafness-anomalies of the upper limbs was carried out by direct automatic Sanger sequencing of the entire coding sequence of the PAX3 gene. Genotyping of parents was carried out by direct automatic sequencing according to Sanger. Sequencing was carried out on an ABIPrism3500Ρ…I instrument (Applied Biosystems) in accordance with the manufacturer’s protocol; primer sequences were selected according to the reference sequence of the target regions of the PAX3 gene (NM_181459.4).In Russian proband 1 year 10 months-old, the phenotypic characteristics of the syndrome of craniofacial dysmorphia-deafness-anomalies of the upper limbs did not differ from the description of sick family members presented in the literature. A molecular genetic study revealed a heterozygous variant c.141C>G(p.Asn47Lys) in the PAX3 gene in the presented patient.Π‘ΠΈΠ½Π΄Ρ€ΠΎΠΌ Ρ‡Π΅Ρ€Π΅ΠΏΠ½ΠΎ-Π»ΠΈΡ†Π΅Π²Ρ‹Ρ… дисморфий-Π³Π»ΡƒΡ…ΠΎΡ‚Ρ‹-Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΉ Π²Π΅Ρ€Ρ…Π½ΠΈΡ… конСчностСй – Ρ€Π΅Π΄ΠΊΠΈΠΉ аутосомно-Π΄ΠΎΠΌΠΈΠ½Π°Π½Ρ‚Π½Ρ‹ΠΉ синдром, обусловлСнный Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π°ΠΌΠΈ Π² Π³Π΅Π½Π΅ PAX3. Π’ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ 2 основных нозологичСских Ρ„ΠΎΡ€ΠΌ – синдрома Π’Π°Π°Ρ€Π΄Π΅Π½Π±ΡƒΡ€Π³Π° 1-Π³ΠΎ ΠΈ 3-Π³ΠΎ Ρ‚ΠΈΠΏΠΎΠ², обусловлСнных Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π°ΠΌΠΈ Π² Π΄Π°Π½Π½ΠΎΠΌ Π³Π΅Π½Π΅, для синдрома Ρ‡Π΅Ρ€Π΅ΠΏΠ½ΠΎ-Π»ΠΈΡ†Π΅Π²Ρ‹Ρ… дисморфий-Π³Π»ΡƒΡ…ΠΎΡ‚Ρ‹-Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΉ Π²Π΅Ρ€Ρ…Π½ΠΈΡ… конСчностСй Π½Π΅ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΎ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π³ΠΈΠΏΠΎΠΏΠΈΠ³ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ волос ΠΈ Π³Π΅Ρ‚Π΅Ρ€ΠΎΡ…Ρ€ΠΎΠΌΠΈΠΈ Ρ€Π°Π΄ΡƒΠΆΠΊΠΈ, ΠΏΡ€ΠΈ этом ΠΎΡ‚ΠΌΠ΅Ρ‡Π°ΡŽΡ‚ΡΡ Π²Ρ€ΠΎΠΆΠ΄Π΅Π½Π½Ρ‹Π΅ ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚ΡƒΡ€Ρ‹ лучСзапястных ΠΈ ΠΌΠ΅ΠΆΡ„Π°Π»Π°Π½Π³ΠΎΠ²Ρ‹Ρ… суставов кистСй. Π’ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ имССтся описаниС 3 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΈΠ· ΠΎΠ΄Π½ΠΎΠΉ сСмьи с синдромом, обусловлСнным Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠΌ c.141C>G(p.Asn47Lys) Π² Π³Π΅Π½Π΅ PAX3.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ – ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΎ-гСнСтичСскиС характСристики ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ российского ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° с синдромом Ρ‡Π΅Ρ€Π΅ΠΏΠ½ΠΎ-Π»ΠΈΡ†Π΅Π²Ρ‹Ρ… дисморфий-Π³Π»ΡƒΡ…ΠΎΡ‚Ρ‹-Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΉ Π²Π΅Ρ€Ρ…Π½ΠΈΡ… конСчностСй. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎ-гСнСтичСский Π°Π½Π°Π»ΠΈΠ· Ρƒ ΠΏΡ€ΠΎΠ±Π°Π½Π΄Π° Π² возрастС 1 Π³ΠΎΠ΄ 10 мСс с фСнотипичСскими ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌΠΈ синдрома Ρ‡Π΅Ρ€Π΅ΠΏΠ½ΠΎ-Π»ΠΈΡ†Π΅Π²Ρ‹Ρ… дисморфий-Π³Π»ΡƒΡ…ΠΎΡ‚Ρ‹-Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΉ Π²Π΅Ρ€Ρ…Π½ΠΈΡ… конСчностСй ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ прямого автоматичСского сСквСнирования ΠΏΠΎ БэнгСру всСй ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π³Π΅Π½Π° PAX3. Π“Π΅Π½ΠΎΡ‚ΠΈΠΏΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ€ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ Ρ‚Π°ΠΊΠΆΠ΅ осущСствляли ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ прямого автоматичСского сСквСнирования ΠΏΠΎ БэнгСру. Π‘Π΅ΠΊΠ²Π΅Π½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π½Π° ΠΏΡ€ΠΈΠ±ΠΎΡ€Π΅ ABIPrism3500Ρ…I (Applied Biosystems) Π² соотвСтствии с ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»ΠΎΠΌ Ρ„ΠΈΡ€ΠΌΡ‹-производитСля, ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΏΡ€Π°ΠΉΠΌΠ΅Ρ€ΠΎΠ² Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ΄ΠΎΠ±Ρ€Π°Π½Ρ‹ согласно рСфСрСнсной ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ†Π΅Π»Π΅Π²Ρ‹Ρ… участков Π³Π΅Π½Π° PAX3 (NM_181459.4). Π£ российского ΠΏΡ€ΠΎΠ±Π°Π½Π΄Π° Π² возрастС 1 Π³ΠΎΠ΄ 10 мСс фСнотипичСскиС характСристики синдрома Ρ‡Π΅Ρ€Π΅ΠΏΠ½ΠΎ-Π»ΠΈΡ†Π΅Π²Ρ‹Ρ… дисморфий-Π³Π»ΡƒΡ…ΠΎΡ‚Ρ‹-Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΉ Π²Π΅Ρ€Ρ…Π½ΠΈΡ… конСчностСй Π½Π΅ ΠΎΡ‚Π»ΠΈΡ‡Π°Π»ΠΈΡΡŒ ΠΎΡ‚ Ρ‚Π°ΠΊΠΎΠ²Ρ‹Ρ… Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ‡Π»Π΅Π½ΠΎΠ² сСмьи, прСдставлСнных Π² Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎ-гСнСтичСскоС исслСдованиС выявило Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ·ΠΈΠ³ΠΎΡ‚Π½Ρ‹ΠΉ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ c.141C>G(p.Asn47Lys) Π² Π³Π΅Π½Π΅PAX3 Ρƒ прСдставлСнного ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°. На основании Π°Π½Π°Π»ΠΈΠ·Π° особСнностСй Ρ„Π΅Π½ΠΎΡ‚ΠΈΠΏΠ° наблюдаСмого Π½Π°ΠΌΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° ΠΈ СдинствСнного сСмСйного случая синдрома Ρ‡Π΅Ρ€Π΅ΠΏΠ½ΠΎ-Π»ΠΈΡ†Π΅Π²Ρ‹Ρ… дисморфий-Π³Π»ΡƒΡ…ΠΎΡ‚Ρ‹-Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΉ Π²Π΅Ρ€Ρ…Π½ΠΈΡ… конСчностСй, прСдставлСнного Π² Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅, обусловлСнного Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠΌ c.141C>G(p.Asn47Lys) Π² Π³Π΅Π½Π΅ PAX3, ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ спСктр клиничСских симптомов этой нозологичСской Ρ„ΠΎΡ€ΠΌ

    Клинико-гСнСтичСскиС характСристики Ρ€Π°Π½Π½Π΅ΠΉ эпилСптичСской энцСфалопатии II Ρ‚ΠΈΠΏΠ°, обусловлСнной мутациями Π² Π³Π΅Π½Π΅ SCN2A

    Get PDF
    Background.Β A large number of single gene disorders with seizures in clinical picture has been described. Among them, a special place is held by early-onset epileptic encephalopathies (EEE) – a genetically diverse group of disorders characterized by manifestation of seizures in the first 2 years of life and severe progressing course. Currently, 58 genetic variants of EEE has been identified.The objectiveΒ is to analyze the incidence, clinical and genetic characteristic of type II EEE in a sample of patients from Russia identified by whole exome sequencing using next generation sequencing.Materials and methods.Β The patient sample included 67 children (35 boys and 32 girls) with ages varying from 4 months to 10 years. All patients underwent neurological examination using the standard techniques. Monitoring of electroencephalography (EEG) was performed in accordance with the International 10–20 system. For magnetic resonance imaging, tomographs with magnetic induction of 1.5 and 3.0 T were used. The identified changes were confirmed by Sanger sequencing using DNA from the patients and their parents.Results.Β In total, 67 patients with EEE were diagnosed, 8 of which had causational mutations in the SCN2A gene: p.Leu1611Pro (c.4832T>C), p.Cys728* (c.2184C>A), p.Arg607* (c.1819C>T), p.Val1325Ile (c.623T>C), p.Leu419Met (c.1255T>A), p.Asp1487Glu (c.4461C>A), p.Val208Ala (c.3973G>A), p.Gln1211Lys (c.3631G>A). Analysis of parent DNA had shown that all mutations appeared de novo. At the time of disease onset, all patients had multiregional epileptiform activity per EEG. Focal seizures, myoclonic seizures, and epileptic spasms were the most common types of seizures in the patients. The majority of patients (5/8) had diffuse muscular hypotonia. All patients had pronounced mental deficiency. All patients received more than 2 therapy regimens (including hormonal therapy and ketogenic diet) but full remission wasn’t obtained. In some patients, partial positive dynamic was registered with hormonal therapy and sodium channel blockers. Various mutations in the SCN2A gene caused a similar clinical picture but had different functional significance which determined the effectiveness of anti-epileptic therapy.Conclusion.Β Identification of the mutated genes causing EEE and further study of their function are important for selection of therapeutic approach to epilepsy treatment.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Описано большоС количСство ΠΌΠΎΠ½ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, Π² клиничСской ΠΊΠ°Ρ€Ρ‚ΠΈΠ½Π΅ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½Π°Π±Π»ΡŽΠ΄Π°ΡŽΡ‚ΡΡ судороги. Π‘Ρ€Π΅Π΄ΠΈ Π½ΠΈΡ… особоС мСсто Π·Π°Π½ΠΈΠΌΠ°ΡŽΡ‚ Ρ€Π°Π½Π½ΠΈΠ΅ эпилСптичСскиС энцСфалопатии (Π Π­Π­) – гСнСтичСски гСтСрогСнная Π³Ρ€ΡƒΠΏΠΏΠ° Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΡ…ΡΡ манифСстациСй судорог Π΄ΠΎ 2-Π»Π΅Ρ‚Π½Π΅Π³ΠΎ возраста ΠΈ тяТСлым ΠΏΡ€ΠΎΠ³Ρ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌ Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ. К настоящСму Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ 58 гСнСтичСских Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² Π Π­Π­.ЦСль исслСдования – Π°Π½Π°Π»ΠΈΠ· частоты встрСчаСмости ΠΈ ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΎ-гСнСтичСских характСристик Π Π­Π­ II Ρ‚ΠΈΠΏΠ° Π² Π²Ρ‹Π±ΠΎΡ€ΠΊΠ΅ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΈΠ· популяции России, выявлСнных Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ сСквСнирования экзома Π½ΠΎΠ²ΠΎΠ³ΠΎ поколСния.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹.Β Π’Ρ‹Π±ΠΎΡ€ΠΊΠ° Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π²ΠΊΠ»ΡŽΡ‡Π°Π»Π° 67 Π΄Π΅Ρ‚Π΅ΠΉ (35 ΠΌΠ°Π»ΡŒΡ‡ΠΈΠΊΠΎΠ² ΠΈ 32 Π΄Π΅Π²ΠΎΡ‡ΠΊΠΈ) Π² возрастС ΠΎΡ‚ 4 мСс Π΄ΠΎ 10 Π»Π΅Ρ‚. ВсСм Π±ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ нСврологичСский осмотр ΠΏΠΎ стандартной ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ΅. ΠœΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³ Π²ΠΈΠ΄Π΅ΠΎ-элСктроэнцСфалографии (Π­Π­Π“) осущСствляли Π² соотвСтствии с ΠœΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠΉ систСмой 10–20. Для ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-рСзонансной Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° примСняли Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Ρ‹ c ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠ΅ΠΉ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля 1,5 ΠΈ 3,0 Π’Π». ВыявлСнныС Π·Π°ΠΌΠ΅Π½Ρ‹ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°Π»ΠΈ сСквСнированиСм ΠΏΠΎ БэнгСру с использованиСм Π”ΠΠš Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΈ ΠΈΡ… Ρ€ΠΎΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹.Β Π‘Ρ‹Π»ΠΈ диагностированы 67 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Π Π­Π­, 8 ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΈΠΌΠ΅Π»ΠΈ ΠΊΠ°ΡƒΠ·Π°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ Π² Π³Π΅Π½Π΅ SCN2A: p.Leu1611Pro (c.4832T>C), p.Cys728* (c.2184C>A), p.Arg607* (c.1819C>T), p.Val1325Ile (c.623T>C), p.Leu419Met (c.1255T>A), p.Asp1487Glu (c.4461C>A), p.Val208Ala (c.3973G>A), p.Gln1211Lys (c.3631G>A). Анализ Ρ€ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΡΠΊΠΎΠΉ Π”ΠΠš ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ всС ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ»ΠΈ de novo. На ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π΄Π΅Π±ΡŽΡ‚Π° приступов всС ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρ‹ ΠΈΠΌΠ΅Π»ΠΈ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΡ€Π΅Π³ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ ΡΠΏΠΈΠ»Π΅ΠΏΡ‚ΠΈΡ„ΠΎΡ€ΠΌΠ½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ Π­Π­Π“. Π§Π°Ρ‰Π΅ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΈΡΡŒ Ρ„ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ приступы, миоклоничСскиС приступы ΠΈ эпилСптичСскиС спазмы. Π£ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π° Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… (5/8) наблюдалась диффузная ΠΌΡ‹ΡˆΠ΅Ρ‡Π½Π°Ρ гипотония. Π£ всСх ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»Π°ΡΡŒ выраТСнная умствСнная ΠΎΡ‚ΡΡ‚Π°Π»ΠΎΡΡ‚ΡŒ. ВсС ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡Π°Π»ΠΈ Π±ΠΎΠ»Π΅Π΅ 2 схСм Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ (Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Π³ΠΎΡ€ΠΌΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ Ρ‚Π΅Ρ€Π°ΠΏΠΈΡŽ ΠΈ ΠΊΠ΅Ρ‚ΠΎΠ³Π΅Π½Π½ΡƒΡŽ Π΄ΠΈΠ΅Ρ‚Ρƒ), ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΏΠΎΠ»Π½ΠΎΠΉ рСмиссии эпилСпсии Π΄ΠΎΡΡ‚ΠΈΡ‡ΡŒ Π½Π΅ ΡƒΠ΄Π°Π»ΠΎΡΡŒ. Π£ части ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² зарСгистрирована частичная ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΠΏΡ€ΠΈ использовании Π³ΠΎΡ€ΠΌΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ ΠΈ Π±Π»ΠΎΠΊΠ°Ρ‚ΠΎΡ€ΠΎΠ² Π½Π°Ρ‚Ρ€ΠΈΠ΅Π²Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ². Π Π°Π·Π½Ρ‹Π΅ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ Π² Π³Π΅Π½Π΅ SCN2A приводят ΠΊ сходной клиничСской ΠΊΠ°Ρ€Ρ‚ΠΈΠ½Π΅, Π½ΠΎ ΠΈΠΌΠ΅ΡŽΡ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ Π·Π½Π°Ρ‡ΠΈΠΌΠΎΡΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΈ опрСдСляСт Ρ€Π°Π·Π½ΡƒΡŽ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ противоэпилСптичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅.Β Π˜Π΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ Π³Π΅Π½Π°, ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ приводят ΠΊ возникновСнию Π Π­Π­, ΠΈ дальнСйшСС ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π΅Π³ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΡ‡Π΅Π½ΡŒ Π²Π°ΠΆΠ½Ρ‹ Π² Π²Ρ‹Π±ΠΎΡ€Π΅ тСрапСвтичСского ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° ΠΊ Π»Π΅Ρ‡Π΅Π½ΠΈΡŽ эпилСпсии

    Клинико-гСнСтичСскиС характСристики ΠΌΠΈΠΎΠΏΠ°Ρ‚ΠΈΠΈ Нонака (GNE-ΠΌΠΈΠΎΠΏΠ°Ρ‚ΠΈΠΈ) Ρƒ российских Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ…

    Get PDF
    Clinical and genetic characteristics of 9patients with Nonaka myopathy (GNE-myopathy) from Russia are presented. As a result of exom sequencing, 11 different mutations were revealed in the GNE gene, 8 of which were described earlier, and 3 – Π‘ys203Ser, Met263CysfsTer and deletion of the whole gene β€” were detected for the first time. The peculiarities of clinical manifestation of Russian patients with GNE-myopathy are described.ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΎ-гСнСтичСскиС характСристики 9 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с ΠΌΠΈΠΎΠΏΠ°Ρ‚ΠΈΠ΅ΠΉ Нонака (GNE-миопатия) ΠΈΠ· России. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ сСквСнирования экзома зарСгистрировано 11 Ρ€Π°Π·Π½Ρ‹Ρ… ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΉ Π² Π³Π΅Π½Π΅ GNE, 8 ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π±Ρ‹Π»ΠΈ описаны Ρ€Π°Π½Π΅Π΅, Π‘ys203Ser, Met263CysfsTer ΠΈ дСлСция Ρ†Π΅Π»ΠΎΠ³ΠΎ Π³Π΅Π½Π° β€” выявлСны Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅. ΠžΠΏΠΈΡΠ°Π½Ρ‹ особСнности клиничСских проявлСний Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… сформированной Π²Ρ‹Π±ΠΎΡ€ΠΊΠΈ

    Consensus concept of modern effective therapy for Duchenne muscular dystrophy

    Get PDF
    Duchenne muscular dystrophy is a genetic orphan neuromuscular disease caused by a mutation in the DMD gene encod‑ ing the protein dystrophin. As a result of developing and progressive muscle damage and atrophy, childrenlose the abil‑ ity to walk, develop respiratory and cardiac disorders. The core elements of good care standards are early diagnosis, prevention and treatment of osteoporosis, daily physical therapy, regular rehabilitation, glucocorticosteroids, and control of heart andlung function. The clinical effect of new targeted pathogenetic therapies for Duchenne muscular dystrophy, restoring synthesis of full or truncated dystrophin, depend on their appropriate combination with existing standards of care. Β© 2023 ABV-Press Publishing House. All rights reserved

    Клинико-гСнСтичСскиС характСристики Π±ΠΎΠ»Π΅Π·Π½ΠΈ Π¨Π°Ρ€ΠΊΠΎβ€“ΠœΠ°Ρ€ΠΈβ€“Π’ΡƒΡ‚Π° Ρ‚ΠΈΠΏΠ° 4D (Ρ‚ΠΈΠΏΠ° Lom) Π² России

    Get PDF
    Introduction. Charcot–Marie–Tooth disease type 4D is a hereditary demyelinating neuropathy, that occurs with the high frequency in patients of Roma origin. It is characterized by early onset at the age of 2–10 years and hearing impairment, manifested by the 3rd decade of life.Aim of the study. To describe the clinical and genetic characteristics of Charcot–Marie–Tooth disease type 4D in Russian patients of Roma origin.Materials and methods. For 14 probands from unrelated families of Roma origin with a clinical diagnosis of Charcot–Marie–Tooth disease, genetic tests for the pathogenic variants c. 442C>T in the NDRG1 gene and c. 3325C>T in the SH3TC2 gene was carried out. For 8 patients with Charcot–Marie–Tooth disease type 4D, detailed clinical and electrophysiological examination was performed.Results. In 11 families of Roma origin, the c. 442C>T pathogenic variant in the NDRG1 gene in a homozygous state was detected, which accounted for 79 % all observed Roma patients with Charcot–Marie–Tooth disease. There are 12 of the 14 tested families live in the European part of Russia, 7 of them are from nearby regions. The average age of onset was 3.3 years. The first symptom in 7 of 8 patients was gait disturbances. At the time of examination (age range 6–19 years), all patients showed marked hypotrophy and weakness of the feet, lower leg, hands muscles, feet deformities, reduction or loss of tendon reflexes.Discussion. Due to the detection of only one pathogenic variant in most Russian patients of Roma origin with Charcot–Marie–Tooth disease, the knowledge of the ethnicity of a proband with early myelinopathy can significantly simplify the confirmation of the diagnosis on the molecular level.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Π‘ΠΎΠ»Π΅Π·Π½ΡŒ Π¨Π°Ρ€ΠΊΠΎβ€“ΠœΠ°Ρ€ΠΈβ€“Π’ΡƒΡ‚Π° Ρ‚ΠΈΠΏΠ° 4D – наслСдствСнная Π΄Π΅ΠΌΠΈΠ΅Π»ΠΈΠ½ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ нСйропатия, Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‰Π°ΡΡΡ с наибольшСй частотой Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² цыганского происхоТдСния ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π°ΡΡΡ Ρ€Π°Π½Π½ΠΈΠΌ Π΄Π΅Π±ΡŽΡ‚ΠΎΠΌ Π² возрастС 2–10 Π»Π΅Ρ‚ ΠΈ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ΠΌ слуха, ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‰ΠΈΠΌΡΡ ΠΊ 3-ΠΉ Π΄Π΅ΠΊΠ°Π΄Π΅ ΠΆΠΈΠ·Π½ΠΈ.ЦСль исслСдования – ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΎ-гСнСтичСскиС характСристики Π±ΠΎΠ»Π΅Π·Π½ΠΈ Π¨Π°Ρ€ΠΊΠΎβ€“ΠœΠ°Ρ€ΠΈβ€“Π’ΡƒΡ‚Π° Ρ‚ΠΈΠΏΠ° 4D Ρƒ российских ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² цыганского происхоТдСния.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΡ€ΠΎΠ±Π°Π½Π΄Π°ΠΌ ΠΈΠ· 14 нСродствСнных сСмСй цыганского происхоТдСния с клиничСским Π΄ΠΈΠ°Π³Π½ΠΎΠ·ΠΎΠΌ «наслСдствСнная ΠΌΠΎΡ‚ΠΎΡ€Π½ΠΎ-сСнсорная нСйропатия» ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ поиск ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² c. 442C>T Π² Π³Π΅Π½Π΅ NDRG1 ΠΈ с. 3325C>T Π² Π³Π΅Π½Π΅ SH3TC2. Π£ 8 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с болСзнью Π¨Π°Ρ€ΠΊΠΎβ€“ΠœΠ°Ρ€ΠΈβ€“Π’ΡƒΡ‚Π° Ρ‚ΠΈΠΏΠ° 4D ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΎΡ†Π΅Π½ΠΊΠ° клиничСского статуса, Ρƒ 3 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² – Π°Π½Π°Π»ΠΈΠ· элСктронСйромиографичСских Π΄Π°Π½Π½Ρ‹Ρ….Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’ 11 ΡΠ΅ΠΌΡŒΡΡ… цыганского происхоТдСния ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹ΠΉ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ c. 442C>T Π² Π³Π΅Π½Π΅ NDRG1 Π² Π³ΠΎΠΌΠΎΠ·ΠΈΠ³ΠΎΡ‚Π½ΠΎΠΌ состоянии, Ρ‡Ρ‚ΠΎ составило 79 % всСх обслСдованных Ρ†Ρ‹Π³Π°Π½ с наслСдствСнной ΠΌΠΎΡ‚ΠΎΡ€Π½ΠΎ-сСнсорной Π½Π΅ΠΉΡ€ΠΎΠΏΠ°Ρ‚ΠΈΠ΅ΠΉ. Из 14 обслСдованных сСмСй 12 ΠΏΡ€ΠΎΠΆΠΈΠ²Π°ΡŽΡ‚ Π² СвропСйской части России, 7 ΠΈΠ· Π½ΠΈΡ… – Π² близкорасполоТСнных ΡΡƒΠ±ΡŠΠ΅ΠΊΡ‚Π°Ρ… Российской Π€Π΅Π΄Π΅Ρ€Π°Ρ†ΠΈΠΈ. Возраст Π΄Π΅Π±ΡŽΡ‚Π° Π±ΠΎΠ»Π΅Π·Π½ΠΈ составил Π² срСднСм 3,3 Π³ΠΎΠ΄Π°. Π£ 7 ΠΈΠ· 8 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² 1-ΠΌ симптомом Π±Ρ‹Π»ΠΎ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ ΠΏΠΎΡ…ΠΎΠ΄ΠΊΠΈ. На ΠΌΠΎΠΌΠ΅Π½Ρ‚ осмотра (возраст ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΎΡ‚ 6 Π΄ΠΎ 19 Π»Π΅Ρ‚) Ρƒ всСх ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² выявлСны выраТСнная гипотрофия ΠΈ ΡΠ»Π°Π±ΠΎΡΡ‚ΡŒ ΠΌΡ‹ΡˆΡ† стоп, Π³ΠΎΠ»Π΅Π½Π΅ΠΉ, кистСй, дСформация стоп, сниТСниС ΠΈΠ»ΠΈ отсутствиС ΡΡƒΡ…ΠΎΠΆΠΈΠ»ΡŒΠ½Ρ‹Ρ… рСфлСксов с Π½ΠΎΠ³.ΠžΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅. Учитывая выявлСниС ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈ Ρ‚ΠΎΠ³ΠΎ ΠΆΠ΅ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° Ρƒ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π° ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² цыганского происхоТдСния с наслСдствСнной ΠΌΠΎΡ‚ΠΎΡ€Π½ΠΎΠΉ сСнсорной Π½Π΅ΠΉΡ€ΠΎΠΏΠ°Ρ‚ΠΈΠ΅ΠΉ, Π·Π½Π°Π½ΠΈΠ΅ этничСской принадлСТности ΠΏΡ€ΠΎΠ±Π°Π½Π΄Π° с Ρ€Π°Π½Π½Π΅ΠΉ ΠΌΠΈΠ΅Π»ΠΈΠ½ΠΎΠΏΠ°Ρ‚ΠΈΠ΅ΠΉ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡƒΠΏΡ€ΠΎΡ‰Π°Π΅Ρ‚ поиск молСкулярно-гСнСтичСской ΠΏΡ€ΠΈΡ‡ΠΈΠ½Ρ‹ Π±ΠΎΠ»Π΅Π·Π½ΠΈ
    corecore