13,952 research outputs found

    Preliminary Skylab MSS channel evaluation

    Get PDF
    The author has identified the following significant results. A set of 18 channels which were considered of usable quality were identified. These were channels 1-14, 17, 19-21. Channels 15, 16, 18, and 22 were dropped out because they were of poor quality; channels 7 and 11 were dropped to limit the total channel number to 16. From these 16 channels, a total of 22 signatures were obtained. Eight were developed from uniform blocks of the UMAP, and 14 from use of the DCLUS program. These signatures fell into six basic categories and classified more than 90% of the five scenes mapped: agriculture land (6 signatures); forest aland (4); water (2); open nonagriculture land (2); urban (6); and disturbed land (2)

    Ruling out a higher spin field solution to the cosmological constant problem

    Full text link
    We consider the modification of Newton's gravity law in Dolgov's higher spin models designed to compensate the cosmological constant. We find that the effective Planck mass is unacceptably large in these models. We also point out that the properties of gravitational waves are entirely different in these models as compared to general relativity.Comment: 7 pages, LaTe

    Measurement of nuclear effects in neutrino interactions with minimal dependence on neutrino energy

    Get PDF
    We present a phenomenological study of nuclear effects in neutrino charged-current interactions, using transverse kinematic imbalances in exclusive measurements. Novel observables with minimal dependence on neutrino energy are proposed to study quasielastic scattering, and especially resonance production. They should be able to provide direct constraints on nuclear effects in neutrino- and antineutrino-nucleus interactions.Comment: 7 pages, 9 figures, accepted version by PR

    Uncertainties in Atmospheric Neutrino Fluxes

    Get PDF
    An evaluation of the principal uncertainties in the computation of neutrino fluxes produced in cosmic ray showers in the atmosphere is presented. The neutrino flux predictions are needed for comparison with experiment to perform neutrino oscillation studies. The paper concentrates on the main limitations which are due to hadron production uncertainties. It also treats primary cosmic ray flux uncertainties, which are at a lower level. The absolute neutrino fluxes are found to have errors of around 15% in the neutrino energy region important for contained events underground. Large cancellations of these errors occur when ratios of fluxes are considered, in particular, the νμ/νˉμ\nu_\mu/\bar{\nu}_\mu ratio below Eν=1E_\nu=1 GeV, the (νμ+νˉμ)/(νe+νˉe)(\nu_\mu+\bar{\nu}_\mu)/(\nu_e+\bar{\nu}_e) ratio below Eν=10E_\nu=10 GeV and the up/down ratios above Eν=1E_\nu=1 GeV are at the 1% level. A detailed breakdown of the origin of these errors and cancellations is presented.Comment: 14 pages, 22 postscript figures, written in Revte

    Summertime Influences of Tidal Energy Advection on the Surface Energy Balance in a Mangrove Forest

    Get PDF
    Mangrove forests are ecosystems susceptible to changing water levels and temperatures due to climate change as well as perturbations resulting from tropical storms. Numerical models can be used to project mangrove forest responses to regional and global environmental changes, and the reliability of these models depends on surface energy balance closure. However, for tidal ecosystems, the surface energy balance is complex because the energy transport associated with tidal activity remains poorly understood. This study aimed to quantify impacts of tidal flows on energy dynamics within a mangrove ecosystem. To address the research objective, an intensive 10-day study was conducted in a mangrove forest located along the Shark River in the Everglades National Park, FL, USA. Forest–atmosphere turbulent exchanges of energy were quantified with an eddy covariance system installed on a 30-m-tall flux tower. Energy transport associated with tidal activity was calculated based on a coupled mass and energy balance approach. The mass balance included tidal flows and accumulation of water on the forest floor. The energy balance included temporal changes in enthalpy, resulting from tidal flows and temperature changes in the water column. By serving as a net sink or a source of available energy, flood waters reduced the impact of high radiational loads on the mangrove forest. Also, the regression slope of available energy versus sink terms increased from 0.730 to 0.754 and from 0.798 to 0.857, including total enthalpy change in the water column in the surface energy balance for 30-min periods and daily daytime sums, respectively. Results indicated that tidal inundation provides an important mechanism for heat removal and that tidal exchange should be considered in surface energy budgets of coastal ecosystems. Results also demonstrated the importance of including tidal energy advection in mangrove biophysical models that are used for predicting ecosystem response to changing climate and regional freshwater management practices

    Detecting malware with information complexity

    Get PDF
    Malware concealment is the predominant strategy for malware propagation. Black hats create variants of malware based on polymorphism and metamorphism. Malware variants, by definition, share some information. Although the concealment strategy alters this information, there are still patterns on the software. Given a zoo of labelled malware and benign-ware, we ask whether a suspect program is more similar to our malware or to our benign-ware. Normalized Compression Distance (NCD) is a generic metric that measures the shared information content of two strings. This measure opens a new front in the malware arms race, one where the countermeasures promise to be more costly for malware writers, who must now obfuscate patterns as strings qua strings, without reference to execution, in their variants. Our approach classifies disk-resident malware with 97.4% accuracy and a false positive rate of 3%. We demonstrate that its accuracy can be improved by combining NCD with the compressibility rates of executables using decision forests, paving the way for future improvements. We demonstrate that malware reported within a narrow time frame of a few days is more homogeneous than malware reported over two years, but that our method still classifies the latter with 95.2% accuracy and a 5% false positive rate. Due to its use of compression, the time and computation cost of our method is nontrivial. We show that simple approximation techniques can improve its running time by up to 63%. We compare our results to the results of applying the 59 anti-malware programs used on the VirusTotal website to our malware. Our approach outperforms each one used alone and matches that of all of them used collectively

    Supersymmetric particle mass measurement with the boost-corrected contransverse mass

    Get PDF
    A modification to the contransverse mass (MCT) technique for measuring the masses of pair-produced semi-invisibly decaying heavy particles is proposed in which MCT is corrected for non-zero boosts of the centre-of-momentum (CoM) frame of the heavy states in the laboratory transverse plane. Lack of knowledge of the mass of the CoM frame prevents exact correction for this boost, however it is shown that a conservative correction can nevertheless be derived which always generates an MCT value which is less than or equal to the true value of MCT in the CoM frame. The new technique is demonstrated with case studies of mass measurement with fully leptonic ttbar events and with SUSY events possessing a similar final state.Comment: 33 pages, 33 .eps figures, JHEP3 styl

    Infinitesimal deformation quantization of complex analytic spaces

    Full text link
    Global constructions of quantization deformation and obstructions are discussed for an arbitrary complex analytic space in terms of adapted (analytic) Hochschild cohomology. For K3-surfaces an explicit global construction of a Poisson bracket is given. It is shown that the analytic Hochschild (co)homology on a complex space has structure of coherent analytic sheaf in each degree
    corecore