105 research outputs found

    Direct digital design of PIDF controllers with ComPlex zeros for DC-DC buck converters

    Get PDF
    This paper presents a new direct digital design method for discrete proportional integral derivative PID + filter (PIDF) controllers employed in DC-DC buck converters. The considered controller structure results in a proper transfer function which has the advantage of being directly implementable by a microcontroller algorithm. Secondly, it can be written as an Infinite Impulse Response (IIR) digital filter. Thirdly, the further degree of freedom introduced by the low pass filter of the transfer function can be used to satisfy additional specifications. A new design procedure is proposed, which consists of the conjunction of the pole-zero cancellation method with an analytical design control methodology based on inversion formulae. These two methods are employed to reduce the negative effects introduced by the complex poles in the transfer function of the buck converter while exactly satisfying steady-state specifications on the tracking error and frequency domain requirements on the phase margin and on the gain crossover frequency. The proposed approach allows the designer to assign a closed-loop bandwidth without constraints imposed by the resonance frequency of the buck converter. The response under step variation of the reference value, and the disturbance rejection capability of the proposed control technique under load variations are also evaluated in real-time implementation by using the Arduino DUE board, and compared with other methods

    A Novel MIMO Control for Interleaved Buck Converters in EV DC Fast Charging Applications

    Get PDF
    This brief proposes a new multiple input multiple output (MIMO) control for off-board electric vehicle (EV) dc fast chargers. The proposed feedback matrix design avoids multiple tuning of controllers in multiple and interconnected loops while improving the performance of interleaved dc buck converters over classical PI/PID controls. The innovative features of the presented strategy are the reference current monotonic tracking from any initial state of charge with an arbitrarily fast settling time and the fast compensation of both load variations and imbalances among the legs. Numerical results validate the performance improvements of the proposed discrete-time MIMO algorithm for interleaved buck converters over classical PI/PID controls. Full-scale hardware-in-the-loop (HIL) and scaled-down prototype experimental results prove the feasibility and effectiveness of the proposal

    Citrullination: the loss of tolerance and development of autoimmunity in rheumatoid arthritis

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovial inflammation and pannus formation, which can lead to severe destruction of cartilage and bone. Several self proteins have been suggested to be disease-driving autoantigens. Moreover the presence of autoantibodies to citrullinated proteins in sera of patients with RA enhances the strength of this hypothesis. Proteins are encoded by a limited number of genes in our genome. Post-translational modifications such as phosphorylation, glycosylation and citrullination can increase the morphological and the functional diversity of the proteome

    Citrullination: the loss of tolerance and development of autoimmunity in rheumatoid arthritis

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovial inflammation and pannus formation, which can lead to severe destruction of cartilage and bone. Several self proteins have been suggested to be disease-driving autoantigens. Moreover the presence of autoantibodies to citrullinated proteins in sera of patients with RA enhances the strength of this hypothesis. Proteins are encoded by a limited number of genes in our genome. Post-translational modifications such as phosphorylation, glycosylation and citrullination can increase the morphological and the functional diversity of the proteome

    Strategies for Improved pDNA Loading and Protection Using Cationic and Neutral LNPs with Industrial Scalability Potential Using Microfluidic Technology

    Get PDF
    Purpose: In recent years, microfluidic technologies have become mainstream in producing gene therapy nanomedicines (NMeds) following the Covid-19 vaccine; however, extensive optimizations are needed for each NMed type and genetic material. This article strives to improve LNPs for pDNA loading, protection, and delivery, while minimizing toxicity. Methods: The microfluidic technique was optimized to form cationic or neutral LNPs to load pDNA. Classical “post-formulation” DNA addition vs “pre” addition in the aqueous phase were compared. All formulations were characterized (size, homogeneity, zeta potential, morphology, weight yield, and stability), then tested for loading efficiency, nuclease protection, toxicity, and cell uptake. Results: Optimized LNPs formulated with DPPC: Chol:DOTAP 1:1:0.1 molar ratio and 10 μg of DOPE-Rhod, had a size of 160 nm and good homogeneity. The chemico-physical characteristics of cationic LNPs worsened when adding 15 μg/mL of pDNA with the “post” method, while maintaining their characteristics up to 100 μg/mL of pDNA with the “pre” addition remaining stable for 30 days. Interestingly, neutral LNPs formulated with the same method loaded up to 50% of the DNA. Both particles could protect the DNA from nucleases even after one month of storage, and low cell toxicity was found up to 40 μg/mL LNPs. Cell uptake occurred within 2 hours for both formulations with the DNA intact in the cytoplasm, outside of the lysosomes. Conclusion: In this study, the upcoming microfluidic technique was applied to two strategies to generate pDNA-LNPs. Cationic LNPs could load 10x the amount of DNA as the classical approach, while neutral LNPs, which also loaded and protected DNA, showed lower toxicity and good DNA protection. This is a big step forward at minimizing doses and toxicity of LNP-based gene therapy

    Dysregulation of NF–Y splicing drives metabolic rewiring and aggressiveness in colon cancer

    Get PDF
    NF-Y is an evolutionarily conserved transcription factor that binds specifically to the CCAAT elements of eukaryotic genes, most of which frequently deregulated in cancer. NF-YA, the regulatory subunit of the NF-Y complex, has two isoforms generated by alternative splicing, NF-YAl and NF-YAs, which differ in the transactivation domain. Transcriptomic data from The Cancer Genome Atlas (TCGA) database highlighted a significant increase in the expression of NF-YAs at the expense of NF-YAl in colorectal cancer (CRC), compared to healthy tissues. Despite this, high NF-YAl levels predict lower patients’ survival and distinguish the mesenchymal molecular subtype CMS4, which is characterized by the worst prognosis. Through the analysis of 3D cellular models, we demonstrated that altered expression of genes related to extracellular matrix and epithelial-mesenchymal transition sustains enhanced migratory and invasive behavior of NF-YAl-transduced cells. Moreover, the integration of metabolomics, bioenergetics and transcriptional analyses demonstrated a direct role for NFYAl in metabolic flexibility of cancer cells that adjust their metabolism in response to environmental changes to potentiate migration. The zebrafish xenograft model confirmed the metastatic potential triggered by NF-YAl in CRC cells. Altogether, our data highlight the transcriptional role of NF-YAl in CRC aggressiveness and suggest splice-switching strategies to hinder NF-YAl-induced metastatic dissemination

    Airway deposition of extrafine inhaled triple therapy in patients with copd: A model approach based on functional respiratory imaging computer simulations

    Get PDF
    Introduction: There is a clear correlation between small airways dysfunction and poor clinical outcomes in patients with chronic obstructive pulmonary disease (COPD), and it is therefore important that inhalation therapy (both bronchodilator and anti-inflammatory) can deposit in the small airways. Two single-inhaler triple therapy (SITT) combinations are currently approved for the maintenance treatment of COPD: extrafine formulation beclomethasone dipropionate/formoterol fumarate/glycopyrronium bromide (BDP/FF/GB), and nonextrafine formulation fluticasone furoate/vilanterol/umeclidinium (FluF/VI/UMEC). This study evaluated the lung deposition of the inhaled corticosteroid (ICS), long-acting β2-agonist (LABA), and long-acting muscarinic antagonist (LAMA) components of these two SITTs. Materials and Methods: Lung deposition was estimated in-silico using functional respiratory imaging, a validated technique that uses aerosol delivery performance profiles, patients’ high-resolution computed tomography (HRCT) lung scans, and patient-derived inhalation profiles to simulate aerosol lung deposition. Results: HRCT scan data from 20 patients with COPD were included in these analyses, who had post-bronchodilator forced expiratory volume in 1 second (FEV1) ranging from 19.3% to 66.0% predicted. For intrathoracic deposition (as a percentage of the emitted dose), deposition of the ICS component was higher from BDP/FF/GB than FluF/VI/UMEC; the two triple therapies had similar performance for both the LABA component and the LAMA component. Peripheral deposition of all three components was higher with BDP/FF/GB than FluF/ VI/UMEC. Furthermore, the ratios of central to peripheral deposition for all three components of BDP/FF/GB were <1, indicating greater peripheral than central deposition (0.48 ±0.13, 0.48±0.13 and 0.49±0.13 for BDP, FF and GB, respectively; 1.96±0.84, 0.97±0.34 and 1.20±0.48 for FluF, VI and UMEC, respectively). Conclusions: Peripheral (small airways) deposition of all three components (ICS, LABA, and LAMA) was higher from BDP/FF/GB than from FluF/VI/UMEC, based on profiles from patients with moderate to very severe COPD. This is consistent with the extrafine formulation of BDP/FF/GB

    Consistency conditions and trace anomalies in six dimensions

    Full text link
    Conformally invariant quantum field theories develop trace anomalies when defined on curved backgrounds. We study again the problem of identifying all possible trace anomalies in d=6 by studying the consistency conditions to derive their 10 independent solutions. It is known that only 4 of these solutions represent true anomalies, classified as one type A anomaly, given by the topological Euler density, and three type B anomalies, made up by three independent Weyl invariants. However, we also present the explicit expressions of the remaining 6 trivial anomalies, namely those that can be obtained by the Weyl variation of local functionals. The knowledge of the latter is in general necessary to disentangle the universal coefficients of the type A and B anomalies from calculations performed on concrete models.Comment: 16 pages, LaTe

    Escherichia coli Is Overtaking Group B Streptococcus in Early-Onset Neonatal Sepsis

    Get PDF
    The widespread use of intrapartum antibiotic prophylaxis (IAP) to prevent group B streptococcus (GBS) early-onset sepsis (EOS) is changing the epidemiology of EOS. Italian prospective area-based surveillance data (from 1 January 2016 to 31 December 2020) were used, from which we identified 64 cases of culture-proven EOS (E. coli, n = 39; GBS, n = 25) among 159,898 live births (annual incidence rates of 0.24 and 0.16 per 1000, respectively). Approximately 10% of E. coli isolates were resistant to both gentamicin and ampicillin. Five neonates died; among them, four were born very pre-term (E. coli, n = 3; GBS, n = 1) and one was born full-term (E. coli, n = 1). After adjustment for gestational age, IAP-exposed neonates had ≥95% lower risk of death, as compared to IAP-unexposed neonates, both in the whole cohort (OR 0.04, 95% CI 0.00–0.70; p = 0.03) and in the E. coli EOS cohort (OR 0.05, 95% CI 0.00–0.88; p = 0.04). In multi-variable logistic regression analysis, IAP was inversely associated with severe disease (OR = 0.12, 95% CI 0.02–0.76; p = 0.03). E. coli is now the leading pathogen in neonatal EOS, and its incidence is close to that of GBS in full-term neonates. IAP reduces the risk of severe disease and death. Importantly, approximately 10% of E. coli isolates causing EOS were found to be resistant to typical first-line antibiotics

    The Role of T Cell Immunity in Monoclonal Gammopathy and Multiple Myeloma: From Immunopathogenesis to Novel Therapeutic Approaches

    Get PDF
    Multiple Myeloma (MM) is a malignant growth of clonal plasma cells, typically arising from asymptomatic precursor conditions, namely monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM (SMM). Profound immunological dysfunctions and cyto-kine deregulation are known to characterize the evolution of the disease, allowing immune escape and proliferation of neoplastic plasma cells. In the past decades, several studies have shown that the immune system can recognize MGUS and MM clonal cells, suggesting that anti-myeloma T cell immunity could be harnessed for therapeutic purposes. In line with this notion, chimeric antigen receptor T cell (CAR-T) therapy is emerging as a novel treatment in MM, especially in the re-lapsed/refractory disease setting. In this review, we focus on the pivotal contribution of T cell im-pairment in the immunopathogenesis of plasma cell dyscrasias and, in particular, in the disease progression from MGUS to SMM and MM, highlighting the potentials of T cell-based immunother-apeutic approaches in these settings
    • …
    corecore