46 research outputs found

    RNAiAtlas: a database for RNAi (siRNA) libraries and their specificity

    Get PDF
    Large-scale RNA interference (RNAi) experiments, especially the ones based on short-interfering RNA (siRNA) technology became increasingly popular over the past years. For such knock-down/screening purposes, different companies offer sets of oligos/reagents targeting the whole genome or a subset of it for various organisms. Obviously, the sequence (and structure) of the corresponding oligos is a key factor in obtaining reliable results in these large-scale studies and the companies use a variety of (often not fully public) algorithms to design them. Nevertheless, as the genome annotations are still continuously changing, oligos may become obsolete, so siRNA reagents should be periodically re-annotated according to the latest version of the sequence database (which of course has serious consequences also on the interpretation of the screening results). In our article, we would like to introduce a new software/database tool, the RNAiAtlas. It has been created for exploration, analysis and distribution of large scale RNAi libraries (currently limited to the human genome) with their latest annotation (including former history) but in addition it contains also specific on-target analysis results (design quality, side effects, off-targets)

    Experimenting Liver Fibrosis Diagnostic by Two Photon Excitation Microscopy and Bag-of-Features Image Classification

    Get PDF
    The accurate staging of liver fibrosis is of paramount importance to determine the state of disease progression, therapy responses, and to optimize disease treatment strategies. Non-linear optical microscopy techniques such as two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG) can image the endogenous signals of tissue structures and can be used for fibrosis assessment on non-stained tissue samples. While image analysis of collagen in SHG images was consistently addressed until now, cellular and tissue information included in TPEF images, such as inflammatory and hepatic cell damage, equally important as collagen deposition imaged by SHG, remain poorly exploited to date. We address this situation by experimenting liver fibrosis quantification and scoring using a combined approach based on TPEF liver surface imaging on a Thioacetamide-induced rat model and a gradient based Bag-of-Features (BoF) image classification strategy. We report the assessed performance results and discuss the influence of specific BoF parameters to the performance of the fibrosis scoring framework.Romania. Executive Agency for Higher Education, Research, Development and Innovation Funding (research grant PN-II-PT-PCCA-2011-3.2-1162)Rectors' Conference of the Swiss Universities (SCIEX NMS-CH research fellowship nr. 12.135)Singapore. Agency for Science, Technology and Research (R-185-000-182-592)Singapore. Biomedical Research CouncilInstitute of Bioengineering and Nanotechnology (Singapore)Singapore-MIT Alliance (Computational and Systems Biology Flagship Project funding (C-382-641-001-091))Singapore-MIT Alliance for Research and Technology (SMART BioSyM and Mechanobiology Institute of Singapore (R-714-001-003-271)

    A Tethered Bilayer Assembled on Top of Immobilized Calmodulin to Mimic Cellular Compartmentalization

    Get PDF
    International audienceBACKGROUND: Biomimetic membrane models tethered on solid supports are important tools for membrane protein biochemistry and biotechnology. The supported membrane systems described up to now are composed of a lipid bilayer tethered or not to a surface separating two compartments: a "trans" side, one to a few nanometer thick, located between the supporting surface and the membrane; and a "cis" side, above the synthetic membrane, exposed to the bulk medium. We describe here a novel biomimetic design composed of a tethered bilayer membrane that is assembled over a surface derivatized with a specific intracellular protein marker. This multilayered biomimetic assembly exhibits the fundamental characteristics of an authentic biological membrane in creating a continuous yet fluid phospholipidic barrier between two distinct compartments: a "cis" side corresponding to the extracellular milieu and a "trans" side marked by a key cytosolic signaling protein, calmodulin. METHODOLOGY/PRINCIPAL FINDINGS: We established and validated the experimental conditions to construct a multilayered structure consisting in a planar tethered bilayer assembled over a surface derivatized with calmodulin. We demonstrated the following: (i) the grafted calmodulin molecules (in trans side) were fully functional in binding and activating a calmodulin-dependent enzyme, the adenylate cyclase from Bordetella pertussis; and (ii) the assembled bilayer formed a continuous, protein-impermeable boundary that fully separated the underlying calmodulin (trans side) from the above medium (cis side). CONCLUSIONS: The simplicity and robustness of the tethered bilayer structure described here should facilitate the elaboration of biomimetic membrane models incorporating membrane embedded proteins and key cytoplasmic constituents. Such biomimetic structures will also be an attractive tool to study translocation across biological membranes of proteins or other macromolecules

    Substrate Micropatterning as a New in Vitro Cell Culture System to Study Myelination

    Get PDF
    Artículo de publicación ISIMyelination is a highly regulated developmental process whereby oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system ensheathe axons with a multilayered concentric membrane. Axonal myelination increases the velocity of nerve impulse propagation. In this work, we present a novel in vitro system for coculturing primary dorsal root ganglia neurons along with myelinating cells on a highly restrictive and micropatterned substrate. In this new coculture system, neurons survive for several weeks, extending long axons on defined Matrigel tracks. On these axons, myelinating cells can achieve robust myelination, as demonstrated by the distribution of compact myelin and nodal markers. Under these conditions, neurites and associated myelinating cells are easily accessible for studies on the mechanisms of myelin formation and on the effects of axonal damage on the myelin sheath.Regenerative Medicine and Nanomedicine Initiative of the Canadian Institutes of Health Research (CIHR) RMF-7028 FONDECYT 1080252 CIHR Ministry of Industry of Canada Rio Tinto Alcan Molson Foundatio

    Locomotion Guidance by Extracellular Matrix Is Adaptive and Can be Restored by a Transient Change in Ca2+ Level

    Get PDF
    Navigation of cell locomotion by gradients of soluble factors can be desensitized if the concentration of the chemo-attractant stays unchanged. It remains obscure if the guidance by immobilized extracellular matrix (ECM) as the substrate is also adaptive and if so, how can the desensitized ECM guidance be resensitized. When first interacting with a substrate containing micron-scale fibronectin (FBN) trails, highly motile fish keratocytes selectively adhere and migrate along the FBN paths. However, such guided motion become adaptive after about 10 min and the cells start to migrate out of the ECM trails. We found that a burst increase of intracellular calcium created by an uncaging technique immediately halts the undirected migration by disrupting the ECM-cytoskeleton coupling, as evidenced by the appearance of retrograde F-actin flow. When the motility later resumes, the activated integrin receptors render the cell selectively binding to the FBN path and reinitiates signaling events, including tyrosine phosphorylation of paxillin, that couple retrograde F-actin flow to the substrate. Thus, the calcium-resensitized cell can undergo a period of ECM-navigated movement, which later becomes desensitized. Our results also suggest that endogenous calcium transients as occur during spontaneous calcium oscillations may exert a cycling resensitization-desensitization control over cell's sensing of substrate guiding cues

    Nano-Stenciled RGD-Gold Patterns That Inhibit Focal Contact Maturation Induce Lamellipodia Formation in Fibroblasts

    Get PDF
    Cultured fibroblasts adhere to extracellular substrates by means of cell-matrix adhesions that are assembled in a hierarchical way, thereby gaining in protein complexity and size. Here we asked how restricting the size of cell-matrix adhesions affects cell morphology and behavior. Using a nanostencil technique, culture substrates were patterned with gold squares of a width and spacing between 250 nm and 2 µm. The gold was functionalized with RGD peptide as ligand for cellular integrins, and mouse embryo fibroblasts were plated. Limiting the length of cell-matrix adhesions to 500 nm or less disturbed the maturation of vinculin-positive focal complexes into focal contacts and fibrillar adhesions, as indicated by poor recruitment of α5-integrin. We found that on sub-micrometer patterns, fibroblasts spread extensively, but did not polarize. Instead, they formed excessive numbers of lamellipodia and a fine actin meshwork without stress fibers. Moreover, these cells showed aberrant fibronectin fibrillogenesis, and their speed of directed migration was reduced significantly compared to fibroblasts on 2 µm square patterns. Interference with RhoA/ROCK signaling eliminated the pattern-dependent differences in cell morphology. Our results indicate that manipulating the maturation of cell-matrix adhesions by nanopatterned surfaces allows to influence morphology, actin dynamics, migration and ECM assembly of adhering fibroblasts

    An Adhesion-Dependent Switch between Mechanisms That Determine Motile Cell Shape

    Get PDF
    Keratocytes are fast-moving cells in which adhesion dynamics are tightly coupled to the actin polymerization motor that drives migration, resulting in highly coordinated cell movement. We have found that modifying the adhesive properties of the underlying substrate has a dramatic effect on keratocyte morphology. Cells crawling at intermediate adhesion strengths resembled stereotypical keratocytes, characterized by a broad, fan-shaped lamellipodium, clearly defined leading and trailing edges, and persistent rates of protrusion and retraction. Cells at low adhesion strength were small and round with highly variable protrusion and retraction rates, and cells at high adhesion strength were large and asymmetrical and, strikingly, exhibited traveling waves of protrusion. To elucidate the mechanisms by which adhesion strength determines cell behavior, we examined the organization of adhesions, myosin II, and the actin network in keratocytes migrating on substrates with different adhesion strengths. On the whole, our results are consistent with a quantitative physical model in which keratocyte shape and migratory behavior emerge from the self-organization of actin, adhesions, and myosin, and quantitative changes in either adhesion strength or myosin contraction can switch keratocytes among qualitatively distinct migration regimes

    A Protein Inventory of Human Ribosome Biogenesis Reveals an Essential Function of Exportin 5 in 60S Subunit Export

    Get PDF
    A systematic search for human ribosome biogenesis factors shows conservation of many aspects of eukaryotic ribosome synthesis with the well-studied process in yeast and identifies an export route of 60S subunits that is specific for higher eukaryotes

    Acquisition speed comparison of microscope software programs

    No full text
    Reliable software is a prerequisite for successful operation of a modern wide field fluorescence microscope. When used for live cell imaging, acquisition speed is of particular interest. This is both because biological processes can be highly-dynamic, and to avoid unnecessary photobleaching and phototoxicity of living samples. This article shows that besides the hardware (microscope) components themselves, the acquisition control software is an important influencing factor of speed performance. We tested and compared the speed performance of five different generic applications (Image-Pro Plus, MetaMorph, Micro-Manager, SlideBook, and Volocity) using typical experimental setups involving a single specific state-of-the-art fluorescence microscope configuration. The test measurements included multichannel experiments, z-stacking, burst acquisition, as well as combinations of these measurements with time-lapse acquisitions. The measured data provided values for guiding the testing and analysis of other microscope systems with similar configurations. Despite the identical hardware settings, significant and surprisingly large speed differences were evident among the various software applications. Additionally, no application was identifiable as the fastest in all tests. Our work pinpoints the importance of the control software in determining a system`s ``real`` maximal imaging speed. The study could serve as basis for further tests, eventually influencing the system selection criteria for speed-sensitive applications. Microsc. Res. Tech., 2010. (c) 2010 Wiley-Liss, Inc
    corecore